Abstract
It is widely believed that the practical success of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) owes to the fact that CNNs and RNNs use a more compact parametric representation than their Fully-Connected Neural Network (FNN) counterparts, and consequently require fewer training examples to accurately estimate their parameters. We initiate the study of rigorously characterizing the sample-complexity of estimating CNNs and RNNs. We show that the sample-complexity to learn linear CNNs and RNNs scales linearly with their intrinsic dimension and this sample-complexity is much smaller than for their FNN counterparts. For both CNNs and RNNs, we also present lower bounds showing our sample complexities are tight up to logarithmic factors.