Abstract

There is a current trend on reevaluating artificial intelligence (AI), its advancements and their implications to society. Uncertainty treatment plays a major role in this discussion. This talk will hopefully convince you that we can make AI more reliable and trustworthy by a sound treatment of uncertainty and logics. Uncertainty is often modelled by probabilities, while it has been argued that some broadening of probability theory is required for a more convincing treatment, as one may not always be able to provide a reliable probability for every situation. Credal models generalize probability theory to allow for partial probability specifications and are arguably a good direction to follow when information is scarce, vague, and/or conflicting. Moreover, they provide means to combine probabilities and logics. We will present and discuss credal approaches from simple examples to sophisticated credal machine learning models.

Attachment

Video Recording