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12 Years ago…
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AI and Better Computing Power
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Example - Deep Fakes 
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Examples from 21 September 2023 

AI and Data Engineering Lab – Uncertainty in AI Group5

Source: NPO

Source: bbc.com Source: bbc.com



Some Consequences
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• AI research has fast growing impact in 
society
• The use of AI might need stronger 

regulation

• We may need ways to certify and control 
AI systems, specially if we do not fully 
“understand” them

• More investment in “better” AI, specially 
from governments

Source: xkcd.com



BBC News – 14 September 2023
Some companies (Google, Meta, Microsoft, SpaceX/X/Tesla) met to discuss AI.

• ``Congress should engage with AI to support innovation and safeguards'', Mark 
Zuckerberg CEO Meta.

• ``I think if this technology goes wrong, it can go quite wrong... we want to be vocal 
about that'', Samuel Altman CEO OpenAI continues ``We want to work with the 
government to prevent that from happening’’.

• ``I think there should be a regulatory body established for overseeing AI to make sure 
that it does not present a danger to the public'', Elon Musk CEO SpaceX/Tesla. And he 
continues ``better that the standard is set by American companies that can work with 
our government to shape these models on important issues’’.
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Doctors’ Example

• Patient Mr. Sick has either auto-immune (A) disease or an infection (B). Without 
treatment he will likely die very soon. Assume these diseases are equally likely a priori.

• After studying the case in private, Dr. Imprecise tells she does not know whether it is 
A or B. Dr. Precise tells it is A.

Which doctor would you prefer if you were Mr. Sick?
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``It's not (only) about the result, it's about how we reached it.''
The hypothetical underlying process for the diagnosis:

• Dr. Imprecise concluded the answer is in the set A,B after studying the data. She was 
not able to pinpoint a unique option.

• Dr. Precise told it is A after flipping a fair coin and using the outcome to choose.

After knowing the process, which doctor would you prefer if you were Mr. Sick?
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Example: knowing when one does not know
Suppose there are 10 options (e.g. the digits) and image data of them. We must discover 
the digit in the image. What is best?

• An approach which always predicts a digit for any given image and has 90% accuracy.

• An approach which always predicts a digit for any given image with accuracy 99.9%, 
but is allowed to say “I do not know” in a certain amount of cases.

• An approach which some times predicts multiple digits (e.g. could not decide between 
a “6” and a “8”) and has 99.99% accuracy (meaning the correct is within the set of 
predicted options).
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AI must consider multiple types of uncertainty
BBC is paying us to discover the popularity of Eastenders (long running soap opera). We 
decide to call 10 “random” valid phone numbers.

• 4 people answered the phone and said they like it
• 1 people answered the phone and said they do not like it
• 5 people did not answer the phone

Typical approaches in AI/ML assume missing data at random, which would lead to 80% 
of people like Eastenders. Is that a meaningful result? Are we ok with reporting this 
percentage back to BBC?
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AI must consider multiple types of uncertainty
BBC is paying us to discover the popularity of Eastenders (long running soap opera). We 
decide to call 10 “random” valid phone numbers.

• 4 people answered the phone and said they like it
• 1 people answered the phone and said they do not like it
• 5 people did not answer the phone

Typical approaches in AI/ML assume missing data at random, which would lead to 80% 
of people like Eastenders. Is that a meaningful result? Are we ok with reporting this 
percentage back to BBC?

• Eastenders is more popular among older people
• Young people much more often do not answer the phone
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Better AI?

• Desirable properties
• Interpretability
• Robustness
• Explainability
• Privacy
• Fairness

• Usually bring benefits but do not come for free
• More computational resources
• More intricate solutions
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Are we willing to pay the price for trustworthy AI?

Source: xkcd.com
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Generative Decision Trees and Random Forests

Representation of Decision Trees as Probabilistic Circuit
- Convert each internal node to a sum node

Weights are given by the mass of each children
- Convert each leaf into a distribution node

Fit a density over the instances in each leaf
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Generative Random Forests

• State of the art for tabular data
• Probabilistic model with tractable marginals/conditionals

• Same quality of results of random forests, while better at:
• Missing data treatment
• Outlier detection
• Smoothing decision boundaries
• Robustness/adversarial training
• Sensitivity analysis
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Using p(x) to know when we do not know
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Samples from (Fashion-)Mnist datasets with lowest (left) and 
highest (right) 𝑝(𝒙) in the test set. 



Using p(x) to know 
when we do not know
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• Better than p(y|x) for outlier 
detection

• Can also be better for knowing 
when we do not know
• E.g. Naïve Bayes classifier tends 

to have extreme p(y|x)



Limitations: p(x) to know when we do not know
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• Imagine data has badly written 5’s and 6’s
• It has many of them
• They lie close to each other in the 

“space” of number images for the 
model in use

• In this case, p(x) of a new sample of interest 
might be very high, while there may be 
great uncertainty about being 5 or 6 
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Attack on/Sensitivity of Parameters (wrt predictions)

Sensitivity analysis
Perturb the model parameters until the predicted class changes.
(Can be also done as a perturbation of the data.)

ϵ-contamination of a vector of parameters 𝒘
𝐶𝒘,' = { 1 − 𝜖 𝒘+ 𝜖𝒗: 𝑣( ≥ 0,∑𝑣( = 1}

ϵ-robustness 
The largest ϵ for which all parameters in 𝐶),' yield the same classification.

∀𝑦* ≠ 𝑦: max
𝒘∈,𝒘,#

𝔼𝒘 𝕝 𝑌 = 𝑦* − 𝕝 𝑌 = 𝑦 𝒙] < 0
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Robust Classification: ϵ-robustness correlates to accuracy
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Accuracy of predictions with ϵ-robustness (a) below and (b) above different 
thresholds for 12 OpenML datasets. 
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Conformal predictions

Rejection rule



Robust Classification
ϵ-robustness differs substantially from 𝑝(𝒙)
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Samples from (Fashion-)Mnist datasets with 
lowest (left) and highest (right) 𝑝(𝒙) in the 
test set. 

Samples from (Fashion-)Mnist datasets with 
lowest (left) and highest (right) ϵ-robustness 
in the test set.
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Robustness measure in classification
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Ongoing Research

• Credal circuits for portfolio optimisation

• Credal clustering for learning more robust deep models

• Credal sets to combine probabilistic propositional logic with deep ML 
models

A difficulty with circuits (if not generated by compilation): structure learning!
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Ongoing: Probabilistic propositional logic to Credal 
Bayesian nets to credal prob. circuits
• Unpublished work: an invitation to join the challenge?

• Build a credal Bayesian net with probabilistic propositional logic (PPL) assessments
• Somehow force bounded treewidth induced by the assessments
• Possibly run structure learning with bounded treewidth too

• Translate this network into a credal probabilistic circuit (akin to Darwiche’s compilation)

• Train (some) model parameters of this circuit

Result: a sort of neuro-symbolic AI?
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Ongoing: Probabilistic propositional logic to Credal 
Bayesian nets to credal prob. circuits
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Thank you for your attention
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Thanks for Alvaro Correia, Alessandro Antonucci, Soroush Ghandi for (parts of) slides and content


