Daniel Hsu

Daniel Hsu

Associate Professor of Computer Science, Columbia University
Daniel Hsu is an associate professor in the Department of Computer Science and a member of the Data Science Institute, both at Columbia University. He works on algorithmic statistics and machine learning, with the goals of designing efficient algorithms for learning and data analysis, and understanding the limits of efficient computation for these tasks. Daniel completed his PhD at UC San Diego and his BS at UC Berkeley. He was a postdoc at the Departments of Statistics at Rutgers University and the University of Pennsylvania and also at Microsoft Research New England. He was selected by IEEE Intelligent Systems as one of “AI’s 10 to Watch” in 2015 and received a Sloan Research Fellowship in 2016. His Ph.D. advisor at UCSD was the glorious Sanjoy Dasgupta. His postdoctoral stints at Penn and Rutgers were with the equally glorious Sham Kakade and Tong Zhang.

Program Visits

Modern Paradigms in Generalization, Fall 2024, Visiting Scientist and Program Organizer
Foundations of Deep Learning, Summer 2019, Visiting Scientist
Foundations of Machine Learning, Spring 2017, Visiting Scientist
program
Modern Paradigms in Generalization
visiting
Fields
algorithmic statistics, machine learning