Abstract

We provide non-asymptotic excess risk guarantees for statistical learning in a setting where the population risk with respect to which we evaluate the target parameter depends on an unknown nuisance parameter that must be estimated from data. We analyze a two-stage sample splitting meta-algorithm that takes as input two arbitrary estimation algorithms: one for the target parameter and one for the nuisance parameter. We show that if the population risk satisfies a condition called Neyman orthogonality, the impact of the nuisance estimation error on the excess risk bound achieved by the meta-algorithm is of second order. Our theorem is agnostic to the particular algorithms used for the target and nuisance and only makes an assumption on their individual performance. This enables the use of a plethora of existing results from statistical learning and machine learning to give new guarantees for learning with a nuisance component. Moreover, by focusing on excess risk rather than parameter estimation, we can give guarantees under weaker assumptions than in previous works and accommodate settings in which the target parameter belongs to a complex nonparametric class. We provide conditions on the metric entropy of the nuisance and target classes such that oracle rates---rates of the same order as if we knew the nuisance parameter---are achieved. We also derive new rates for specific estimation algorithms such as variance-penalized empirical risk minimization, neural network estimation and sparse high-dimensional linear model estimation. We highlight the applicability of our results in four settings of central importance: 1) heterogeneous treatment effect estimation, 2) offline policy optimization, 3) domain adaptation, and 4) learning with missing data.

Video Recording