Abstract

Classical streaming algorithms typically do not leverage data properties or patterns in their input. We propose to augment such algorithms with a learning model that enables them to exploit data properties without being specific to a particular pattern or property. We focus on the problem of estimating the frequency of elements in a data stream, a fundamental problem with applications in network measurements, natural language processing, and security. We propose a new framework for designing frequency estimation streaming algorithms that automatically learn to leverage the properties of the input data. We present a theoretical analysis of the proposed algorithms and prove that, under natural assumptions, they have lower space complexity than prior algorithms. We also evaluate our algorithms on two problems ? monitoring Internet traffic and tracking the popularity of search queries ? and demonstrate their performance gains. Joint work with Chen-Yu Hsu, Dina Katabi and Ali Vakilian.