Abstract
Graph sparsification has been an important topic with many structural and algorithmic consequences. Recently hypergraph sparsification has come to the fore and has seen exciting progress. In this paper we take a fresh perspective and show that they can be both be derived as corollaries of a general theorem on sparsifying matroids and monotone submodular functions.
Quotients of matroids and monotone submodular functions generalize $k$-cuts in graphs and hypergraphs. We show that a weighted ground set of a monotone submodular function $f$ can be sparsified while approximately preserving the weight of every quotient of $f$ with high probability in randomized polynomial time.
This theorem conceptually unifies cut sparsifiers for undirected graphs [BK15] with other interesting applications. One basic application is to reduce the number of elements in a matroid while preserving the weight of every quotient of the matroid. For hypergraphs, the theorem gives an alternative approach to the hypergraph cut sparsifiers obtained recently in [CKN20], that also preserves all $k$-cuts. Another application is to reduce the number of points in a set system while preserving the weight of the union of every collection of sets. We also present algorithms that sparsify hypergraphs and set systems in nearly linear time, and sparsify matroids in nearly linear time and queries in the rank oracle model.