Abstract
In 1932, Walter Cannon published his seminal text, The Wisdom of the Body, introducing the notion of homeostasis. He conceived of the body as a complex system actively working to keep itself in a stable state despite adversarial engagement with an uncertain and dangerous environment. Cannon’s concept of homeostasis would not only revolutionize the way we think about medicine but also inspire cyberneticists and early artificial intelligence researchers to think about the body and brain as well-regulated machines.
In this talk, I refocus Canon's work under a contemporary lens, showing how non-neural biological networks do very smart things. I will describe concepts from feedback control that illuminate necessary architectures for homeostasis. I will show how such systems can be both resilient to most disturbances while fragile to specific adversarial vectors. Identifying these fragilities can guide positive interventions that can steer dysregulated systems back to stable behavior. Throughout, I aim to highlight the role of mathematical and qualitative theory in our understanding and manipulation of systems that behave effectively in unknown futures.