Natural Selection

Rasmus Nielsen *UC-Berkeley*

Haploid Model

Frequency
$$p$$
 q Relative Fitness $w_A = 1$ $w_a = 1 + s$

Average fitness:
$$\overline{w} = w_A p + w_a q$$

Allele frequency in next generation:
$$p' = \frac{W_A p}{\overline{W}}$$

Change over many generations:
$$p_t = \frac{p_0}{p_0 + q_0(1+s)^t}$$

Frequency
$$p^2$$
 Aa aa q^2 Relative Fitness $w_{AA} = 1$ $w_{Aa} = 1 + hs$ $w_{aa} = 1 + s$

Average fitness:
$$\overline{w} = w_{AA}p^2 + w_{Aa}2pq + w_{aa}q^2$$

Allele frequency in next generation:
$$p' = \frac{w_{AA}p^2 + w_{Aa}pq}{\overline{w}} = \frac{\overline{w}_Ap}{\overline{w}}$$

Directional selection: $w_{AA} \ge w_{Aa} \ge w_{aa}$ (neutrality: $w_{AA} = w_{Aa} = w_{aa}$)

Frequency
$$p^2$$
 AA Aa aa q^2 Relative Fitness $w_{AA} = 1$ $w_{Aa} = 1 + hs$ $w_{aa} = 1 + s$

Average fitness: $\overline{w} = w_{AA}p^2 + w_{Aa}2pq + w_{aa}q^2$

Allele frequency in next generation:
$$p' = \frac{w_{AA}p^2 + w_{Aa}pq}{\overline{w}} = \frac{\overline{w}_Ap}{\overline{w}}$$

Directional selection: $w_{AA} \ge w_{Aa} \ge w_{aa}$ (neutrality: $w_{AA} = w_{Aa} = w_{aa}$)

Overdominance: $W_{AA} < W_{Aa} > W_{aa}$ (stable equilibrium)

Frequency
$$p^2$$
 AA Aa aa Frequency p^2 $2pq$ q^2 Relative Fitness $w_{AA} = 1$ $w_{Aa} = 1 + hs$ $w_{aa} = 1 + s$

Average fitness: $\overline{w} = w_{AA}p^2 + w_{Aa}2pq + w_{aa}q^2$

Allele frequency in next generation: $p' = \frac{w_{AA}p^2 + w_{Aa}pq}{\overline{w}} = \frac{\overline{w}_{AA}p}{\overline{w}}$

Directional selection: $w_{AA} \ge w_{Aa} \ge w_{aa}$ (neutrality: $w_{AA} = w_{Aa} = w_{aa}$)

Overdominance: $w_{AA} < w_{Aa} > w_{aa}$ (stable equilibrium)

Underdominance: $w_{AA} > w_{Aa} < w_{aa}$ (either A or a will be fixed)

Types of Selection

- Fertility versus viability selection
- Frequency dependent selection and fluctuating selection.
- Sexual selection
- Kin selection
- Group selection

Frequency
$$p^2$$
 AA Aa aa Frequency p^2 $2pq$ q^2 Relative Fitness $w_{AA} = 1$ $w_{Aa} = 1 + hs$ $w_{aa} = 1 + s$

Average fitness: $\overline{w} = w_{AA}p^2 + w_{Aa}2pq + w_{aa}q^2$

Allele frequency in next generation: $p' = \frac{w_{AA}p^2 + w_{Aa}pq}{\overline{w}} = \frac{\overline{w}_{AA}p}{\overline{w}}$

Directional selection: $w_{AA} \ge w_{Aa} \ge w_{aa}$ (neutrality: $w_{AA} = w_{Aa} = w_{aa}$)

Overdominance: $w_{AA} < w_{Aa} > w_{aa}$ (stable equilibrium)

Underdominance: $w_{AA} > w_{Aa} < w_{aa}$ (either A or a will be fixed)

Typically we assume fitnesses of AA, Aa and aa to be 1, 1-s, and $(1-s)^2 \approx 1-2s$, respectively.

Wright-Fisher (viability selection):

$$x' = \frac{x}{x + (1 - x)(1 - s)} = \frac{x}{1 - (1 - x)s} = x + x(1 - x)s + o(s)$$

Diffusion processes

$$E(Y_{1/N} - Y_0) = x(1 - x)\gamma \cdot \frac{1}{2N} + o(N^{-1})$$

$$var(Y_{1/N} - Y_0) = x(1 - x) \cdot \frac{1}{2N} + o(N^{-1})$$

$$Lf = \frac{1}{4N}x(1-x)\frac{d^{2}}{dx^{2}}f + sx(1-x)\frac{d}{dx}f$$

FIGURE 18.6. The probability that a single copy of an allele with selective advantage s will be fixed in a population of effective size N_e is $2s(N_e/N)/(1-\exp(-4N_e s))$, where N is the actual number of individuals. The graph shows this probability plotted against $N_e s$, for $N_e = N$. If the allele is strongly favored ($N_e s >> 1$), then $P \sim 2s(N_e/N)$. If $N_e s$ is small, then drift is much stronger than selection $(1/2N_e >> s)$, and so the allele is effectively neutral (shaded strip). Because each of the 2N genes in the population has the same chance of ultimately fixing, $P \sim 1/2N$ (see p. 425). Finally, if the allele is deleterious ($N_e s << -1$), then the probability of fixation becomes very small: $P \sim 2|s|(N_e/N)\exp(-4N_e|s|)$, where |s| is the positive magnitude of selection (i.e., -s if s < 0).

Figure 2

Deleterious mutations

80% of all new non-synonymous SNPs must have selection coefficients in the range where they are negatively selected but not so deleterious that they will never be found in the population.

Selective Sweeps

Selective Sweeps

From Kaplan, Hudson and Langley (1989)

Coalescence Tree

Coalescence Models

Kaplan, Hudson and Langley (1989)

Three phases:

- (1) When the selected allele is at low frequency $(x(t) < \varepsilon)$, 2Nx(t) is modelled using a supercritical branching process.
- (2) At intermediate frequencies, the the change in frequency is modelled deterministically:

$$\frac{dx(t)}{dt} = 2Nsx(t)(1-x(t))$$

(3) When the selected allele is at high frequencies $(x(t) > 1 - \varepsilon)$, 1 then 2N(1 - x(t)) follows a subcritical branching process.

X(t): frequency of mutant at time t

N: population size

s: selection coefficient

Coalescent Process (0 < x(t) < 1)

For a sample of n gene copies in a neutral locus, the coalescent process has state space on $\{(i, j) : 1 \le i + j \le n\}$ and follows a time-inhomogeneous Markov jump process, which jumps from state (i, j) at rates

$$q_{i-1,j}(x(t)) = \binom{i}{2} x(t)^{-1}$$

$$q_{i,j-1}(x(t)) = \binom{j}{2} (1 - x(t))^{-1}$$

$$q_{i+1,j-1}(x(t)) = jRx(t)$$

$$q_{i-1,j+1}(x(t)) = iR(1 - x(t))$$

R = 2Nr, r = recombination rate per generation

Various Extensions and Simplifications

- Stephan, Wiehe and Lentz (1992), Wiehe and Stephan (1993), Kim and Stephan (2002) and others ignore the stochastic phases.
- Durrett and Schweinsberg (2004) showed that under this assumption and $N \to \infty$, $r \ln(2N)/s \to a$, $s (\ln N)^2 \to \infty$ then for j > 1

$$p_{k,k-j+1} \rightarrow {k \choose j} p^j (1-p)^{k-j}$$
, where $p = e^{-a}$

Where $p_{n,k}$ is the probability that n ancestral lineages are reduced to k ancestral lineages after a selective sweep (looking backwards in time).

 More theory on multiple mergers: Barton (1998) Durrett and Schweinsberg (2004), Etheridge et al. (2006), Pfaffelhuber et al. (2006) and others.

Krone and Neuhauser (1997) Ancestral Selection Graph

Fig. 6.1. A realization of the ancestral selection graph for a sample of size 4.

Fig. 6.2. The actual genealogy depends on the state of the ultimate ancestor.

Background Selection

• Charlesworth, Morgan and Charlesworth (1993): the shape of the genalogy will be just as in the neutral case but with

$$N_e = Ne^{-u/2 sh}$$

sc $\pi/\pi_0 \approx e^{-u/2sh}$, where u is the deleterious mutation rate.

• Adding recombination, Nordborg, Charlesworth and Charlesworth (1996):

$$\frac{\pi}{\pi_0} \approx \exp\left(-\int_0^L \frac{u(x)sh}{2(sh + |M(x) - M(y)|)^2} dx\right)$$

Motoo Kimura (1969): The Neutral Theory
Molecular evolution is dominated by mutation and genetic drift. Selection plays only a minor role.

To tests this hypothesis – and to detect selection in general – a number of <u>Tests of Neutrality</u> have been developed

Evolutionary factor	Intraspecific variability ^a	Interspecific variability	Ratio of interspecific to intraspecific variability	Frequency spectrum
Increased mutation rate	Increases	Increases	No effect	No effect
Negative directional selection	Reduced	Reduced	Reduced if selection is not too strong.	Increases the proportion of low frequency variants
Positive directional selection	May increase or decrease	Increased	Increased	Increases the proportion of high frequency variants
Balancing selection	Increases	May increase or decrease	Reduced	Increases the proportion of intermediate frequency variants
Selective sweep (linked neutral sites)	Decreased	No effect on mean rate of substitution, but the variance increases.	Increased	Mostly increases the proportion of low frequency variants.

Second base Second base

First base		U			С			A			G		Third base
U	UUU UUC UUA UUG	Phenylalanine Phenylalanine Leucine Leucine	FFLL	UCU UCC UCA UCG	Serine Serine Serine Serine	s s s	UAU UAC UAA UAG	Tyrosine Tyrosine Stop Stop	Y	UGU UGC UGA UGG	Cysteine Cysteine Stop Tryptophan	C C W	U C A G
С	CUU CUC CUA CUG	Leucine Leucine Leucine Leucine	חחחח	CCU CCC CCA CCG	Proline Proline Proline Proline	PPP	CAU CAC CAA CAG	Histidine Histidine Glutamine Glutamine	нноо	CGU CGC CGA CGG	Arginine Arginine Arginine Arginine	R R R	U C A G
A	AUU AUC AUA AUG	Isoleucine Isoleucine Isoleucine Start (Methionine	I I M)	ACU ACC ACA ACG	Threonine Threonine Threonine Threonine	T T T	AAU AAC AAA AAG	Asparagine Asparagine Lysine Lysine	NNKK	AGU AGC AGA AGG	Serine Serine Arginine Arginine	S S R R	U C A G
G	GUU GUC GUA GUG	Valine Valine Valine Valine	>>>>	GCU GCC GCA GCG	Alanine Alanine Alanine Alanine	A A A	GAU GAC GAA GAG	Aspartic Acid Aspartic Acid Glutamic Acid Glutamic Acid	D D E E	GGU GGC GGA GGG	Glycine Glycine Glycine Glycine	9999	U C A G

RNA Codon Amino acid Abbreviation Copyright © 2004 Pearson Prentice Hall, Inc. Copyright © 2004 Pearson Prentice Hall, Inc.

Nonsynonymous/synonymous rate ratio: d_N/d_S

 d_N = number of nonsynonymous mutations per nonsynonymous site.

 d_S = number of synonymous mutations per synonymous site.

 $d_N/d_S < 1$: Negative selection

 $d_N/d_S = 1$: Neutrality (no selection)

 $d_N/d_S > 1$: Positive selection

Selection for avoidance of immune recognition in viruses

Influenza hemagglutinin molekyle

Gene categories that show evidence of positive selection in *E. coli*

EcoCyc category	Description	Category size	Fisher p- value
BC-8	Extrachromosomal	142	0.00E-00
BC-8.3	Transposon related	48	0.00E-00
BC-4.1.B	Beta barrel porins	20	2.73E-14
BC-8.1	Prophage genes and phage related functions	112	4.91E-14
BC-7.4	Outer membrane	63	2.14E-10
BC-1.6.3.2	Core region	11	2.54E-07
BC-1.5.3.11	Menaquinone, ubiquinone	28	1.03E-05
BC-1.6.11	Glycoprotein (incl. some fimbrie and curlin protein)	12	4.21E-05
BC-8.4	Colicin related	10	0.00366

FhuA

OmpC

OmpF

LamB

Biological process	Number of genes	<i>p</i> -value
Immunity and defense	417	0.0000
T-cell mediated immunity	82	0.0000
Chemosensory perception	45	0.0000
Biological process unclassified	3069	0.0000
Olfaction	28	0.0004
Gametogenesis	51	0.0005
Natural killer cell mediated immunity	30	0.0018
Spermatogenesis and motility	20	0.0037
Inhibition of apoptosis	40	0.0047
Interferon-mediated immunity	23	0.0080
Sensory perception	133	0.0160
B-cell- and antibody-mediated immunity	57	0.0298

McDonald-Kreitman test

	Within species	Between species
Nonsynonymous	A	В
Synonymous	C	D

Neutrality: $\frac{A}{B} = \frac{C}{D}$

Test using test of homogeneity.

The HKA test (Hudson-Kreitman-Aquade)

In the HKA test, the levels of polymorphism and divergence in two or more loci are considered:

Locus 1 Locus 2
Segregating sites
$$S_1$$
 S_2
Fixed differences F_1 F_2

$$X^{2} = \sum_{i=1}^{2} \frac{\left(F_{i} - \hat{E}(F_{i})\right)^{2}}{\hat{V}(F_{i})} + \sum_{i=1}^{2} \frac{\left(S_{i} - \hat{E}(S_{i})\right)^{2}}{\hat{V}(S_{i})}$$

Dmd intron 7 and 44 in humans

Nachman and Crowell 2000

HKA tests comparing *Dmd* intron 7 vs. intron 44, *Homo vs. Pan*

Geographic region	Locus	S	D	HKA χ^2	P value
Africa	Intron 7	6	39		
Africa		_		0.54	
	Intron 44	15	27	2.51	NS
Europe	Intron 7	1	39		
-	Intron 44	10	27	5.10	< 0.05
Asia	Intron 7	0	39		
	Intron 44	10	27	7.01	< 0.01
Americas	Intron 7	3	39		
	Intron 44	9	27	2.52	NS
World	Intron 7	9	39		
	Intron 44	19	27	3.08	0.08
non-Africa	Intron 7	4	39		
	Intron 44	15	27	5.01	< 0.05

NS, not significant.

Tajima's D Test (1989)

There are two common unbiased method of moments estimators of θ under the infinite sites model: Watterson's estimator, based on the number of segregating sites and Tajima's estimator, based on the average number of pairwise differences:

$$\hat{\theta}_W = S / \left(\sum_{i=1}^{n-1} 1/i \right) \quad \text{and} , \qquad \hat{\theta}_T = \sum_{i,j:i \neq j} k_{ij} / \binom{n}{2}$$

where S is the number of segregating (variable) sites and k_{ij} is the number of nucleotide differences between sequence i and j in the sample. Notice that is given by the average number of pairwise differences which in much of the literature is denoted by π . Tajima suggested using

$$D = \frac{\hat{\theta}_T - \hat{\theta}_W}{\sqrt{\hat{V}(\hat{\theta}_T - \hat{\theta}_W)}}$$

as a test statistic when testing the neutral model.

Haplotype homozygosity

Selective Sweeps

