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Distribution Learning

• Draw samples from unknown distribution P (e.g., # copies of NYT

sold on different days).

• Output distribution Q that ε-approximates the density function of P

with probability > 1 − δ.

• Goal is to optimize # samples(ε, δ) (computational efficiency also

desirable).

Total Variation Distance

dtv(P,Q) =
1

2

∫
Ω

|p(x) − q(x)| dx
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Distribution Learning: (Small) Sample of Previous Work

• Learning any unimodal distirbution with O(logN/ε3) samples

[Birgé, 1983]

• Sparse cover for Poisson Binomial Distributions (PBDs), developed

for PTAS for Nash equilibria in anonymous games [Daskalakis,

Papadimitriou, 2009]

• Learning PBDs [Daskalakis, Diakonikolas, Servedio, 2011] and sums

of independent integer random variables [Dask., Diakon., O’Donnell,

Serv. Tan, 2013]

• Poisson multinomial distributions [Daskalakis, Kamath,

Tzamos, 2015], [Dask., De, Kamath, Tzamos, 2016], [Diakonikolas,

Kane, Stewart, 2016]

• Estimating the support and the entropy with O(N/ logN) samples

[Valiant, Valiant, 2011]
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Warm-up: Learning a Binomial Distribution Bin(n, p)

Find p̂ s.t. |pn − p̂n| 6 ε
√
p(1 − p)n , or equivalently:

|p − p̂| 6 ε

√
p(1 − p)

n
= err(n, p, ε)

Then, dtv(B(n, p),B(n, p̂)) 6 ε

Estimating Parameter p

• Estimator: p̂ =
(∑N

i=1 si

)
/(Nn)

• If N = O
(
ln(1/δ)/ε2

)
, Chernoff bound implies

P[|p − p̂| 6 err(n, p, ε)] > 1 − δ
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Poisson Binomial Distributions (PBDs)

• Each Xi is an independent 0/1 Bernoulli trial with E[Xi ] = pi .

• X =
∑n

i=1 Xi is a PBD with probability vector p = (p1, . . . pn).

• X is close to (discretized) normal distribution (assuming known

mean µ and variance σ2).

• If mean is small, X is close to Poisson distribution with λ =
∑n

i=1 pi .
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Learning Poisson Binomial Distributions

Birgé’s algorithm for unimodal distributions: O
(
log n/ε3

)
samples.

Distinguish “Heavy” and “Sparse” Cases [DaskDiakServ 11]

• Heavy case, σ2 > Ω(1/ε2):

• Estimate variance mean µ̂ and σ̂2 of X using O(ln(1/δ)/ε2) samples.

• (Discretized) Normal(µ̂, σ̂2) is ε-close to X .

• Sparse case, variance is small:

• Estimate support : using O(ln(1/δ)/ε2) samples, find a, b s.t.

b − a = O(1/ε) and P[X ∈ [a, b]] > 1 − δ/4.

• Apply Birge’s algorithm to X[a,b] (# samples = O(ln(1/ε)/ε3))

• Using hypothesis testing, select the best approximation.

# samples improved to Õ(ln(1/δ)/ε2) (best possible even for binomials)

Estimating p = (p1, . . . pn): Ω(21/ε) samples [Diak., Kane, Stew., 16]
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Learning Sequences of Poisson Binomial Distributions

• F = (f1, f2, . . . , fk , . . .) sequence of functions with fk : [0, 1]→ [0, 1]

and f1(x) = x .

• PBD X =
∑n

i=1 Xi defined by p = (p1, . . . , pn).

• PBD sequence X (k) =
∑n

i=1 X
(k)
i , where each X

(k)
i is a 0/1

Bernoulli with E
[
X

(k)
i

]
= fk(pi ).

• Learning algorithm selects k (possibly adaptively) and draws random

sample from X (k).

• Given F and sample access to (X (1),X (2), . . . ,X (k), . . .), can we

learn them all with less samples than learning each X (k) separately?

• Simple and structured sequences, e.g., powers fk(x) = xk (related

to random coverage valuations and Newton identities).
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Motivation: Random Coverage Valuations

• Set U of n items.

• Family A = {A1, . . . ,Am} random subsets of U.

• Item i is included in Aj independently with probability pi .

• Distribution of # items included in union of k subsets,

i.e., distribution of | ∪j∈[k] Aj |

• Item i is included in the union with probability 1 − (1 − pi )
k

• # items in union of k sets is distributed as n − X (k)
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Powers of Poisson Binomial Distribution

PBD Powers Learning Problem

• Let X =
∑n

i=1 Xi be a PBD defined by p = (p1, . . . , pn).

• X (k) =
∑n

i=1 X
(k)
i is the k-th PBD power of X defined by

pk = (pk1 , . . . , p
k
n ).

• Learning algorithm that draws samples from selected powers and

ε-approximates all powers of X with probability > 1 − δ.
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Learning the Powers of Bin(n, p)

• Estimator p̂ =
(∑N

i=1 si

)
/(Nn) . If p small, e.g., p 6 1/e,

|p − p̂| 6 err(n, p, ε)⇒ |pk − p̂k | 6 err
(
n, pk , ε

)
Intuition: error ≈ 1/

√
n leaves important bits of p unaffected.

• But if p ≈ 1 − 1
n ,

p = 0. 99 . . . 9︸ ︷︷ ︸
log n

458382︸ ︷︷ ︸
“value”

• Sampling from the first power does not reveal “right” part p, since

error ≈
√

p(1 − p)/n ≈ 1/n.

• Not good enough to approximate all binomial powers (e.g.,

n = 1000, p = 0.9995, 0.99951000 ≈ 0.6064, 0.99971000 ≈ 0.7407)

• For ` = 1
ln(1/p)

, p` = 1/e : sampling from `-power reveals “right” part.
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Sampling from the Right Power

Algorithm 1 Binomial Powers

1: Draw O
(
ln(1/δ)/ε2

)
samples from Bin(n, p) to obtain p̂1.

2: Let ˆ̀← d1/ ln(1/p̂1)e.
3: Draw O

(
ln(1/δ)/ε2

)
samples from B(n, p

ˆ̀
) to get estimation q̂ of p

ˆ̀
.

4: Use estimation p̂ = q̂1/
ˆ̀

to approximate all powers of Bin(n, p).

• We assume that p 6 1 − ε2/n. If p > 1 − ε2/nd , we need

O
(
ln(d) ln(1/δ)/ε2

)
samples to learn the right power `.
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Learning the Powers vs Parameter Learning

Question: Learning PBD Powers ⇔ Estimating p = (p1, . . . , pn)?

• Lower bound of Ω(21/ε) for parameter estimation holds if we draw

samples from selected powers.

• If pi ’s are well-separated, we can learn them exactly by sampling

from powers.
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Lower Bound on PBD Power Learning

• PBD defined by p with n/(ln n)4 groups of size (ln n)4 each.

Group i has pi = 1 − ai
(ln n)4i , ai ∈ {1, . . . , ln n}.

• Given (Y (1), . . . ,Y (k), . . .) that is ε-close to (X (1), . . . ,X (k), . . .),

we can find (e.g., by exhaustive search) (Z (1), . . . ,Z (k), . . .) where

qi = 1 − bi
(ln n)4i and ε-close to (X (1), . . . ,X (k), . . .).

• For each power k = (ln n)4i−2,∣∣E[X (k)
]
− E

[
Z (k)

]∣∣ = Θ(|ai − bi |(ln n)
2) and∣∣V[X (k)

]
+ V

[
Z (k)

]∣∣ = O((ln n)3).

• By sampling appropriate powers, we learn ai exactly:

Ω(n ln ln n/(lnn)4) samples.
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Parameter Learning through Newton Identities


1

µ1 2

µ2 µ1 3
...

...
. . .

. . .

µn−1 µn−2 . . . µ1 n




cn−1

cn−2

cn−3

...

c0

 =


−µ1
−µ2
−µ3

...

−µn

⇔Mc = −µ ,

where µk =
∑n

i=1 p
k
i and ck are the coefficients of

p(x) =
∏n

i=1(x − pi ) = xn + cn−1x
n−1 + . . .+ c0.

• Learn (approximately) µk ’s by sampling from the first n powers.

• Solve system Mc = −µ to obtain ĉ :̇ amplifies error by O
(
n3/22n

)
• Use Pan’s root finding algorithm to compute |p̂i − pi | 6 ε : requires

accuracy 2O(−nmax{ln(1/ε),ln n}) in ĉ .

• # samples = 2O(nmax{ln(1/ε),ln n})
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Some Open Questions

• Class of PBDs where learning powers is easy but parameter

learning is hard ?

• If all pi 6 1 − ε2

n , can we learn all powers with o(n/ε2) samples?

• If O(1) different values in p, can we learn all powers with O(1/ε2)

samples?
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Graph Binomial Distributions

• Each Xi is an independent 0/1 Bernoulli trials with E[Xi ] = pi .

• Graph G (V ,E ) where vertex vi is active iff Xi = 1.

• Given G , learn distribution of # edges in subgraph induced by active

vertices, i.e., XG =
∑

{vi ,vj }∈E XiXj

• G clique: learn # active vertices k (# edges is k(k−1)
2 ).

• G collection of disjoint stars K1,j , j = 2, . . . , Θ(
√
n) with pi = 1 if vi

is leaf: Ω(
√
n) samples are required.
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Some Observations for Single p

• If p small and G is almost regular with small degree, X is close to

Poisson distribution with λ = mp2.

• Estimating p as p̂ =

√(∑N
i=1 si

)
/(Nm) gives ε-close

approximation if G is almost regular, i.e., if
∑

v deg
2
v = O(m2/n).

• Nevertheless, characterizing structure of XG is wide open:
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Thank you!
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