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online resource allocation: first generalization

g 16@] (6] u = u [0®

0~ (Av) wp.pi i

000

° , initial
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e agent has type 6; with prob p;

also known as: network revenue management; single-minded buyer
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online resource allocation: second generalization
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e d resources, initial capacities (B, B?,..., B9)
e T agents arrive sequentially
e cach has type , wants
also known as: online weighted matching; unit-demand buyer
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online allocation across fields
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e related problems studied in Markov decision processes, online
algorithms, prophet inequalities, revenue management, etc
e informational variants:

distributional knowledge < bandit settings < adversarial inputs
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the technological zeitgeist

the ‘deep’ learning revolution

vast improvements in machine learning for
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axiomatizing the zeitgeist

the deep learning revolution

vast improvements in machine learning for data-driven prediction

e axiom: have access to black-box predictive algorithms
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axiomatizing the zeitgeist

the deep learning revolution
vast improvements in machine learning for
e axiom: have access to

core question of this talk

how does having such an oracle affect online resource allocation?

e TL;DR - new online allocation policies with strong regret bounds

e re-examining old questions leads to surprising new insights
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bridging online allocation and predictive models

The Bayesian Prophet: A Low-Regret Framework for Online Decision Making
Alberto Vera & S.B. (2018)

https://ssrn.com/abstract_id=3158062
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https://ssrn.com/abstract_id=3158062

focus of talk: allocation with single-minded agents

O 6@ |6 w w w Y| m m m |0

6 ~ (A,V) W.p. p ~
(4

° , initial
° arrive sequentially; each has type 6 = (A, v)
e A = resource requirement, v = value
e agent has type 6; with prob p;, i.i.d.
online allocation problem

allocate resources to maximize sum of rewards
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optimal policy
can be computed via dynamic programming
— requires exact distributional knowledge
— ‘curse of dimensionality’: |state-space| = T X By X ... X By

‘prophet’ benchmark

V°ff: OFFLINE optimal policy; has full knowledge of {61,6,,...,07}
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performance measure: regret

prophet benchmark: V°7

e OFFLINE knows entire type sequence {0:|t =1... T}

e for the network revenue management setting, V7 given by

— N;i[1: T] ~ # of arrivals of type 6; = (A;,v;) over {1,2,..., T}

regret
E[Regret] = E[V°T — V€]
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online allocation with prediction oracle

given black-box predictive oracle about performance of OFFLINE
(specifically, for any t, B, have statistical info about V°[t, T])

e let m; = P[V°7[t, T] decreases if OFFLINE accepts t™ arrivall

Bayes selector

accept t" arrival iff 7, > 0.5

theorem [Vera & B, 2018]

(under mild tail bounds on N;[t : T])
Bayes selector has E[Regret| independent of T, By, By, .. ., By

e arrivals can be time-varying, correlated; discounted rewards
e works for general settings (single-minded, unit-demand, etc.)

e can use approx oracle (e.g., from samples)
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standard approach: (RAC)

offline optimum Vv

n
max. E XjVi
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i=1 i=1
n n
S.t.ZA,'X,' <B S.t.ZA;X,' <B
i=1 i=1
0<x < N[L:T] 0<x <E[N[L: T]] = Tpi

— E[V°#] < V (via Jensen's, concavity of Vo w.rt. N;)
— fluid RAC: accept type 6; with prob T‘—p

proposition

fluid RAC has E[Regret] = ©(v/T)

— [Gallego & van Ryzin’97], [Maglaras & Meissner’06]
— N.B. this is a static policy! 12/18



RAC with

offline optimum V°f re-solved fluid LP V#(t):
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S.t.ZA,'X,' <B S.t‘ZA;X,'[t] < B[t]
i=1 i=1
0<x, <N, 0< X,'[t] < E[/\/,‘[l’ : TH = (T = t)p,-

i[t]

AC with re-solving: at time t, accept type 6, with prob (T/\;t)pc

— regret improves to o(v/T) [Reiman & Wang’'08]

— O(1) regret under (dual) non-degeneracy [Jasin & Kumar’'12]

— most results use V' as benchmark (including ‘prophet inequality’)
proposition [Vera & B’18]

for degenerate instances, /' — [V = Q(\/T)
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-solved fluid LP
fesenEe UL the re-solved LP gives an

n . . .
approximate admission oracle
max. E xi[t]vi
i=1

s.t. Ax[t] < Blt],
0 < xi[t] < E[N;[t: T]]
proposition [Vera & B, 2018]
fluid Bayes selector has E[Regret] < 2vimax > 1y P;

accept type 0; iff

— proposed for multi-secretary by [Gurvich & Arlotto, 2017]
— NRM via partial resolving [Bumpensanti & Wang, 2018]
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proof outline

the proof comprises two parts

1. compensated coupling: regret bound for Bayes selector for generic
online decision problem

2. bound compensation for online packing problems via LP sensitivity,
measure concentration
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the compensated coupling: make

for any time t, budget BJt]

let V°(t, B[t]) £ OFFLINE starting from current state

for any action a, disagreement set Q;(a) = set of sample-paths w
where a is sub-optimal (given B[t])

e can compensate OFFLINE to follow same action a as ONLINE
VOff(tv B[t]) < R:Ig + Vmax]-wth(a) + VOff(t + 1, B[t + 1])

e iterating, we get

T

'\H‘[\/Off] < ”{:[\/H/g] T Vmax Z P'[C\)T(at)]

=i

note: Bayes selector picks a; = min, P[Q:(a;)]
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compensated coupling for single resource allocation

for any time t, budget BJt]

e if Bayes selector rejects type 6;, assume OFFLINE front-loads 6;
— error only if OFFLINE rejects all future 6;

e if Bayes selector accepts type 6;, assume OFFLINE back-loads 6;
— error only if OFFLINE accepts all future 0;
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compensated coupling for single resource allocation

for any time t, budget BJt]
e if Bayes selector rejects type 6;, assume OFFLINE front-loads 6;
— error only if OFFLINE rejects all future 6;

e if Bayes selector accepts type 6;, assume OFFLINE back-loads 6;
— error only if OFFLINE accepts all future 0;

e claim: smaller of the two events has probability e=<(7—1)

17/18



summ

online allocation via the Bayes selector

e new online allocation policy with horizon-independent regret
e way to use black-box predictive algorithms

e generic regret bounds for any online decision problem
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