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3 types of people in a robot’s lite
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Optimize utility in coordination with people.
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Figure out what utility to optimize.
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Maximize robot utility.

-

g = argmax Ug($r)
SR
robot plan
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Maximize robot utility.
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maximizes robot utility
$p = arg rrgx Ur(Sr)
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When the human is also acting.

-

$p = arg IT%%X Ur($r, €n)

depends on human plan
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Predict H action, optimize R action in response

Formalizing Assistive Teleoperation [RSS'12]



Formalizing Assistive Teleoperation [RSS'12]



HRI as predict-then-react

S = argmax Uy (§)
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HRI as predict-then-react

maximizes human utility

¢y = argmax Uy ($y)
$H
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HRI as predict-then-react

(" ..
human utility
$p = argmax Uy ($y)
redicted plan *H
prediced ‘
O robot utility
$g = arg max Ur($r:€n)
robot plan
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One Google car [..] couldn’t get through a four-way
stop because its sensors kept waiting for other
(human) drivers [..]. The human drivers kept
inching forward looking for the advantage —
paralyzing Google’s robot.

“Google’s Driverless Cars Run Into Problem:
Cars With Drivers”[Richtel&Dougherty]
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Robot actions
affect human actions.




Leveraging this effect can
make seemingly impossible plans possible.
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People are not obstacles or disturbances.



People do not act in isolation.
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HRI as predict-then-react
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$py = arg max Uy (€n) 1
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$gp = arg max Ur(€r, &R)
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Planning for Autonomous Cars that
Leverage Effects on Human Actions [RSS’16]



HRI as an underactuated system
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Planning for Autonomous Cars that
Leverage Effects on Human Actions [RSS’16]



HRI as an underactuated system
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Planning for Autonomous Cars that
Leverage Effects on Human Actions [RSS’16]



HRI as an underactuated system
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Planning for Autonomous Cars that
Leverage Effects on Human Actions [RSS’16]

r = argmax Ug ($g, ¢ (ER))

MPC, Quasi-Newton local
Othimization, implicit differentiati
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HRI as an underactuated system
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Planning for Autonomous Cars that
Leverage Effects on Human Actions [RSS’16]
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HRI as an underactuated system
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Planning for Autonomous Cars that
Leverage Effects on Human Actions [RSS’16]




HRI as an underactuated system

-

$n($r; 0) = argmax Uy (§u, $r; 0)

hiddeﬂ
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Planning for Autonomous Cars that
Leverage Effects on Human Actions [RSS’16]



HRI as an underactuated system

-
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$n($r; 0) = argmax Uy (§u, $r; 0)
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Planning for Autonomous Cars that
Leverage Effects on Human Actions [RSS’16]
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People do not act in isolation.
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Adapting to the individual driver

-

O\

$n($r; 0) = argmax Uy Sy, f} 9)1

$k = argmax Ug (§r, §51(Sr; 0))
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Information Gathering Actions
over Human Internal State [IROS’16]



Adapting to the individual driver

-

$n($r; 0) = argmax Uy ($u, $r; 9)1
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(9 = argmax b(0)

Sk = argmax U (§r, §11 ($r; 0))

b'(60) < P(uy|x,ug,8)b(6)
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Information Gathering Actions
over Human Internal State [IROS’16]
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All Users Drive in Almost the Same Way
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|[dea: Leverage the robot's actions!
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Adapting to the individual driver
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Information Gathering Actions
over Human Internal State [IROS’16]



Actively estimating driver style
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$n($r; 0) = argmax Uy ($u, $r; 9)1
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+ AE[H(b) — H(b")]
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Information Gathering Actions
over Human Internal State [IROS’16]



HRI as an underactuated system
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Information Gathering Actions
over Human Internal State [IROS’16]
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Coordination at. 4-

Way

Stops




Robot Trajectories
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Inch Forward -




Attentive Users: Contint
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Inch Forward -




Distracted Users' [Go Back




Uy Human Should Go [First




Uy Human Should Go [First




average speed
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Communication-like strategies
emerged from optimizing in a system
that accounts for human reactions.
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myopic human optimization

max U(MH, MR) H%?X u(‘;T.R/ érH((;IR))
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: :. The robot guides

the person to better plans.

Implicitly Assisting Humans to
Choose Good Grasps [ISER’16] i
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Goal Handover
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Expressive Robots
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Goals [RSS'13] Utility [RSS'17]
best paper finalist

Timing [HRI"17] Incapability [HRI'18] Task Plans[ WAFR’16]
best paper finalist



Coordination requires reasoning
about effects on human actions and beliefs.













JACK CLARK & DARIO AMODEI

Reinforcement learning algorithms can break in
surprising, counterintuitive ways. In this post we'll
explore one failure mode, which is where you
misspecify your reward function.

























- .t <
- ' > . - .:*"
. _ '
- »
° ‘ %
. 5 ~ - &
- -. o . - 2
- - e .




We are bad at speciiying
utility functions for robots.




How can robots
perform well in spite of that?
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[NIPS16,ICRA16,CDCI6,
HRI17,ICRA17,]JCAI17a [JCAT17b,
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Figure out what utility to optimize.
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1. The robot should have
uncertainty about its reward.




What is the
right distribution?
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score and winning were ... but no longer
correlated at training time... correlated at test time
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lava was not ... but appeared
present at training time at test time



Dylan Hadfield-Menell Smitha Milli

2. All we know about the true reward is that the
specified reward works well in the training envs.




Dylan Hadfield-Menell Smitha Milli

2. The behavior incentivized by the spectiied
reward in training has high true reward.




Reward Design
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Inverse Reward Design
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Inverse Reward Design
[NIPS’17,0ral]
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Inverse Reward Design
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Inverse Reward Design
[NIPS’17,0ral]
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The behavior incentivized by the specified reward
n training has high true reward

P(é‘g*, Mtrain) X eﬁIE[R(gie*thrain) | E~P(§10,M¢rqin)]
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The behavior incentivized by the specified reward
N training has high true reward
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The behavior incentivized by the specified reward
ln training has high true reward
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The behavior incentivized by the specified reward
ln training has high true reward
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The behavior incentivized by the specified reward
ln training has high true reward
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The behavior incentivized by the specified reward
ln training has high true reward
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The behavior incentivized by the specified reward
n training has high true reward
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The behavior incentivized by the specified reward
n training has high true reward
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The behavior incentivized by the specified reward
n training has high true reward
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What is the
right distribution?
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Raw observations, no direct indicators..
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Designer has proxy based on indicators (forgets lava)
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Designer has proxy based on indicators (forgets lava),
and buitlds classifiers from raw obs to indicators
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Designer has proxy based on indicators (forgets lava),
and regresses proxy based on observations.
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There are many reward functions
defined over raw observations that
lead to the same behavior!







The agent can avoid
unintended consequences, even
when the features that matter are latent!
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Simplifying motion planning cost tuning fé':}

Simplifying Reward Design
through Divide-and-Conquer

Robotics: Science and Systems, 2018



Specified rewards are
observations about the true desired reward.
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Human guidance
ls observation about the true reward.




Learning from rich guidance modalities
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Human teaching [NIPS'16] Orders [[JCAI'17a] ShutDown command [I[JCAI'17b]
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