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One problem with dynamic networks

« What does the network look like at time t.?
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One problem with dynamic networks
—

 We have seen all types of
aggregation in the literature.

« Rarely has the method been
justified.

 However, it has deep impact on the
outcome of downstream analytics.

Latest Recent Complete Time
snapshot? past? past? Decay?
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How does aggregation affect analysis?

We here explore four particular questions:
1. What does the network look like at time t?
2. What are the communities and how do they evolve?
3. How do nodes change (centrality/membership)?
4. Whatis the impact on analytics?
(e.g., on analytics such as machine learning)
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Generating Network at Time t

What is a “current” network?
At any given t+ £, may be few, if any, edges

Solution: aggregate over a time window 0
However, past edges are also informative

Edges from prior window may still have some influence

Add edges from prior network with decay parameter

Prune edges with low weight (below n)
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Generating Network at Time t

Network at time t, then can be defined as
Adjacency matrix at time t:
A, ={e;f (t—é)st'st}
A=Al +o- A
Final network at time t:
G =(V.E)

E = {efj

a; = n},afj cA’

V' = {vi

. t t
Elj(eij EE re, EE )}
Normalize t and O to resultin snapshots G...G7
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Tracking Communities

Given G, use modularity clustering to identify k
communities (using weighted or unweighted edges)

C' = (cf,---,c,i),cf = {vj‘vj = Vt}
Identify communities from C*2 which are also in Ct
Categorize community actions into four major events

Continue: |/’ N¢c}|>0.5%|c/™"| and |/’ Nc}|=0.65%|c!

Merge: ¢/ Nc'|>0.5%|c™| and |¢/"" Nc’|<0.65%|c!

l

Split: Significant portions (>30%) of ci(t"l) move into two
or more communities in Ct

Death: None of the above
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I
Tracking Nodes

- From community actions, we can track nodes
- Split node movement into three major events

Stay: Community continues/merges and node
stays with community

Leave: Community continues/merges but node
goes to another community

Other: Community splits or dies
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Experimental Study

- Research question:
What is the effect of varying graph-
extraction parameters?

- Methodology:
1. Select data sets
2. Vary parameters and extract communities
3. Track communities over time
4. Downstream analytics: machine learning
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Data Sets used

« The Enron email data set (http://www.cs.cmu.edu/~enron/)

151 nodes (Enron employees) communicating with each
other over 2 years

We set 0 =1 month for our study
Edge-weight = # emails between people in a given month
60K emails, containing 139K links over 2 years

« World trade flows (WTF) (http://www.nber.org/datay)

203 nodes (countries) of trades between countries from 1962
through 2000

We set O =1 year as that is the granularity of the data

Edge-weight of i=>j is normalized across all i=>k (keep top-10)
32K links
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Varying parameters

- We performed an empirical study looking at the
effects of changing & and n

. =30.5, 0.75, 0.9, 1.0}

1 =30.05, 5.0, 10.0% [enron]

1 =$0.01, 0.05, 0.10, 0.25, 0.5, 0.75, 1.0% [world trade flows]
We tested when using weighted and unweighted edges

Used to generate attribute values and identifying
communities
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What does the network look like?
World trade flows (1993)

(a=0.5; Nn=0.75)

(a=1.0; n=0.05)
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Snapshot of evolution... (a=0.5; 17=0.05)

World Trade Flows
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Effect on communities stability

WTF: a=1.0; n=0.05; weighted edges

Legend:

O Nnew (any filled shape)
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NS splits in next step

L.) dissolves after this

WTF: a=0.5; n=0.05; weighted edges
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Effect on communities stability

‘ Enron: a=1.0; 17=5.0; weighted edges Enron: =0.5; 17=5.0; weighted edges
DAY
D D
D D

-
Legend:

O new (any filled shape)

(D continues in next step

PN merges in next step
NS splits in next step

\ dissolves after this




Effect on community sizes
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Effect on longevity of communities

WTF: a=1.0; 17 =0.05 WTF: a=0.5; 17=0.05
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Effect on Betweenness centrality (world trade flow)
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Downstream Analytics: Machine Learning

. 2 Classification problems
Given G*...G*¥ predict changes in communities going into Ct
Given G...G{t? predict changes in nodes going into Ct

. Attributes used are purely

Community: Density, inter-and intra-link ratio, size, number of
triangles, average closeness centrality, ...

Nodes: Number of triangles, inter- vs intra-link ratio, size of
communities linked to, ...

- We performed 5x2 CV
« Various off-the-shelf ML methods used

Logistic regression, decision trees, naive bayes
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Class Distribution: Enron

Enron communities

cC/M/S C/M/S C/M/S
a\n 0.05 5.00 10.00
0.50 151/52/2 | 124/55/3 | 110/56/2
0.75 176/20/1 | 179/34/3 | 180/32/2
0.90 180/22/1 | 187/25/1 | 196/25/1
1.00 200/16/0 | 197/16/1 | 204/17/ 1
Enron nodes

L/S L/S L/S
a\n 0.05 5.00 10.00
0.50 737 /3259 | 660/1908 | 485/ 1365
0.75 505 /3633 | 545/2926 | 463 /2462
0.90 392 /3741 | 406/3443 | 331/3128
1.00 320/3822 | 326/3612 | 266/ 3449
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-
Class Distribution: WTF

World trade flows communities

c/m/s c¢c/m/s c/m/Ss Cc/mMm/s C/M/S C/M/S C/M/S
a\n 0.01 0.05 0.10 0.25 0.50 0.75 1.00

0.50 187/60/13/194/69/10[201/79/8|264/86/7|252/59/3|164/10/0| 113/0/0
0.75 205/37/4]1201/42/5|215/45/6|219/66/7|275/67/7|289/55/3[265/23/0
0.90 211/30/1({206/30/5|219/35/1/216/46/4|215/59/6|240/58/4[269/49/3
1.00 212 /17 /3(210/18/2]205/22/1/221/30/2|208/47/3]212/41/3[218/49/4

World trade flows nodes

a\n 0.01 0.05 0.10 0.25 0.50 0.75 1.00

0.50 1293 /4795|1269 / 4768|1361 /4652|1172 /4709 585 /2976 | 273 /1432 | 156 /718
0.75 906 /5260 | 980 /5173 | 906 /5223 |1084 /4935| 892 /4797 | 610 /3970 | 386 / 2782
0.90 803 /5380 | 806 /5304 | 861 /5292 | 843 /5263 | 963 /4986 | 805 /4887 | 640 /4765
1.00 576 /5604 | 599 /5578 | 620 /5555 | 644 /5476 | 702 / 5266 | 619 /5202 | 683 / 4938
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Effect on downstream analytics

Cluster Evolution (WTF)
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Effect on downstream analytics
Cluster Evolution (enron)
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Conclusion

1. There are many ways to pre-process dynamic data
2. Introduced principled parameterized framework

3. Explored how parameters affected various
analytics

Take-aways:
1. Varying parameters can uncover structure

2. Different parameters needed to answer different
questions

3. Exploring parameters crucial to understand data

4. Need to make explicit what parameters were
used in study and why
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Thank you

. Sofus A. Macskassy
- Data Scientist, Facebook

Unifying Theory and Experiment for Large-Scale Networks - Simons Institute - 2013 29



