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Networks are mathematical abstractions of complex
systems

Networks are useful for

o visualization

©

discovery of regularity
patterns

exploratory analysis

©

o ...

of complex systems.
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Interactions between variables are not always observable

Drosophila
Life Cycle
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Interactions between variables are not always observable

Data collected over a period of
time is easily accessible

Drosophila
Life Cycle

2 3 T
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Estimating time-varying networks
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How to recover changing interactions between objects from data
collected over time?



Talk Objective

How to recover changing interactions between objects from data
collected over time?

Challenges:
- Number of samples small
- Large number of objects

- Noisy data

Data may contain missing values
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@ Estimating Conditional Independence Relationships

o Representation — Markov Networks
o Estimating Graph Structure
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Markov Networks

Random vector X = (X1,...,X,)
Graph G = (V, E) with p nodes

- represents conditional independence relationships between nodes

Useful for exploring associations between measured variables

(a,b) ¢ E <= X, L X} | X3 (ab:=V\{a,b})

P[X, | Xy, Xo5] = P[X, | Xop]

(Koller and Friedman, 2009)
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Two Common Markov Networks

Gaussian Markov Network: X ~ N (u, X)

plx) xexp (50 )= o ) )

The precision matrix Q = 3~! encodes both parameters and the graph

structure
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(Koller and Friedman, 2009; Lauritzen, 1996)
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Two Common Markov Networks

Gaussian Markov Network: X ~ N (u, X)

plx) xexp (50 )= o ) )

The precision matrix Q = 3~! encodes both parameters and the graph
structure

Discrete Markov network: X € {—1,1}?  (Ising model)

p(x;©) x exp Z Zalaa + Z ZaTpBab
acV a,beVxV

© = (04p)ap encodes the conditional independence relationships

(Koller and Friedman, 2009; Lauritzen, 1996)
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Structure Learning Problem

Given an 4.7.d. sample D,, = {x;}}"_; from a distribution P € P
Learn the set of conditional independence relationships

G =G(D,)
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Structure Learning Problem

Given an 4.7.d. sample D,, = {x;}}"_; from a distribution P € P
Learn the set of conditional independence relationships

G =G(D,)
Gaussian MarkOV NetWOI‘kS (Drton and Perlman, 2007)

- Form the maximum likelihood estimator for the covariance matrix

- Test for zeros in the precision matrix
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Structure Learning Problem

Given an 4.7.d. sample D,, = {x;}}"_; from a distribution P € P

Learn the set of conditional independence relationships

G =G(D,)

Gaussian MarkOV NetWOI‘kS (Drton and Perlman, 2007)

- Form the maximum likelihood estimator for the covariance matrix

- Test for zeros in the precision matrix

Discrete Markov Networks (chickering, 1996)

- Hard to learn structure, since the log partition function cannot be
evaluated efficiently
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Structure Learning in High-Dimensions

Penalized Pseudo-Likelihood Estimation
- Neighborhood Selection

- Useful for learning the structure of Gaussian and discrete Markov
Networks

é\a: 0(1; i) — A||0q
arg max > y(0a;x:) = Al|0al

i€[n]
Conditional likelihood: v(64;%;) = log Plx; 4 | Xia; 64

(Meinshausen and Biihlmann, 2006)
(Ravikumar, Wainwright, and Lafferty, 2009)
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Neighborhood Selection

Local structure estimation

0, — 0(0,;D,)—\|0,
arg max (( )=Al16all1 ©

Estimated neighborhood @

N, ={beV |8y #0}
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Neighborhood Selection

Local structure estimation

~

0, — 0(04: D) —\|6,
arg max ( )= All0al1

Estimated neighborhood

N, ={beV |8y #0}
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Neighborhood Selection

Local structure estimation

~

0, — 0(04: D) —\|6,
arg max ( )= All0al1

i=(% + 0 x 00 0)
Estimated neighborhood

N, ={beV |8y #0}
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Neighborhood Selection

Local structure estimation

~

0, — 0(04: D) —\|6,
arg max ( )= All0al1

i=(% + 0 x 00 0)
Estimated neighborhood

N, ={beV |8y #0}

N, = {2,3,5}
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Neighborhood Selection

Local structure estimation
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0, — 0(04: D) —\|6,
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Neighborhood Selection

Local structure estimation

~
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Neighborhood Selection

Local structure estimation

~

0, — 0(04: D) —\|6,
arg max ( )= All0al1

Estimated neighborhood

N, ={beV |8y #0}
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Properties of Neighborhood Selection

Graph structure can be recovered consistently
- provable guarantees in a high-dimensional setting

- Meinshausen and Bithlmann (2006); Ravikumar, Wainwright, and Lafferty (2009)
Peng, Wang, Zhou, and Zhu (2009)

Fast estimation procedures
- efficient solvers for #1 penalized problems

- Beck and Teboulle (2009); Friedman, Hastie, and Tibshirani (2008)

M. Kolar (Chicago Booth) Estimating Time-Varying Networks November 20, 2013

22



Outline

@ Estimating Conditional Independence Relationships

o Representation — Markov Networks
o BEstimating Graph Structure

@ Time-Varying Networks

o Smoothly Varying Networks
o Networks With Jumps

® An Application

@ Some theoretical results

M. Kolar (Chicago Booth) Estimating Time-Varying Networks November 20, 2013 23



@ Estimating Conditional Independence Relationships

o Representation — Markov Networks
o Estimating Graph Structure

@ Time-Varying Networks

o Smoothly Varying Networks
o Networks With Jumps

@ An Application

@ Some theoretical results



Estimating Time-Varying Networks
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November 20, 2013
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Estimating Time-Varying Networks

14 3 3 3 4 3 14

x' ~P(6"; G
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Estimating Time-Varying Networks

14 3 3 3 4 3 14

x' ~ P(6";G")

Nodal observations
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Estimating Time-Varying Networks

14 3 3 3 4 3 14
BEEEE0E
x' ~ P(0"; G

Nodal observations

Varying Coefficients
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Estimating Time-Varying Networks

14 3 3 3 4 3 14
BEEEE0E
x' ~P(6"; G

Nodal observations Varying Structure

Varying Coefficients
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Estimating Time-Varying Networks

14 3 3 3 4 3 14

x' ~P(6"; G

Nodal observations Varying Structure

Varying Coefficients

E'={(a,b) €V x V| 6, # 0}
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General Estimation Framework
Data: D,, = {x' | x! ~P(0"; G e, Tn={1/n,2/n,...,1}

argmax £(D,,{0'}) — pen ({Ht})

Loss: ¢(D,, {6})

- measures the fit of model to data

Penalty: pen ({6'})
- balances the complexity of model and the fit to data

- encodes structural assumptions about model class
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Two scenarios

@ Smooth Networks . . . . . .

Smooth Change Kernel
Reweighting
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Two scenarios

@ Smooth Networks

@ Networks With Jumps

Smooth Change Kernel
Reweighting

l Time

Abrupt Change

Structure Variation: A, = |81 — 8 Time
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Two scenarios

@ Smooth Networks

(Song et al., 2009)
(Kolar et al., 2010)
(Kolar and Xing, 2011)
(Kolar and Xing, 2012c)

@ Networks With Jumps

Smooth Change Kernel
Reweighting

Abrupt Change

Structure Variation: A, = |81 — 8 Time
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Smoothly Evolving Networks

7(0; Xt) = log P[ﬂ?t a | Xt 3 0] Smooth Change Kernel
’ ’ Reweighting

. Kh(t—T)
w‘r(t) - Zte% Kh(t _ 7_)

0, (1) = arg max ZwT (0;x¢) — A||O]]1
teT

Kolar, Song, Ahmed, and Xing (2010)
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Smoothly Evolving Networks

0:x:) = log Pl X0 Smooth Change Kernel
’Y( ) t) g [t,a| t,as ] Reweighting

. Kh(t—T)
w‘r(t) - Zte% Kh(t _ 7_)

0, (1) = arg max ZwT )7(0;x¢) — A||O]]1
teT

Smoothness

Kolar, Song, Ahmed, and Xing (2010)
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Smoothly Evolving Networks

7(0; Xt) = log P[ﬂft a | Xt 3 0] Smooth Change Kernel
’ ’ Reweighting

. Kh(t—T)
w‘r(t) - Zte% Kh(t _ 7_)

Smoothness Sparsity

Kolar, Song, Ahmed, and Xing (2010)
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Smoothly Evolving Networks

7(0; Xt) = log P[ﬂft a | Xt 3 0] Smooth Change Kernel
’ ’ Reweighting

w (t) _ Kh(t — 7—) l Time

éa(T) — arg meax Z W, t)v(@; Xt) . /\||0||1 Time 1 Time 2 ... TimeT
Smoothness Sparsity 0! 02 o7

Kolar, Song, Ahmed, and Xing (2010)
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Two scenarios

@ Smooth Networks

@ Networks With Jumps

Smooth Change Kernel
Reweighting

l Time

Abrupt Change

Structure Variation: A; = |81 — 8 Time
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Two scenarios

@ Smooth Networks

@ Networks With Jumps

(Kolar et al., 2010)
(Kolar, Song, and Xing, 2009)
(Kolar and Xing, 2012a)

Smooth Change Kernel
Reweighting

Abrupt Change

Structure Variation: A; = |81 — 8 Time

M. Kolar (Chicago Booth) Estimating Time-Varying Networks November 20, 2013 35



Networks With Jumps

Abrupt Change

Structure Variation: A, = |81 — 8| Time

05 0.4 0.6
Time t (i/n)

max »_y(0%x) =\ Y [16']
t t

{et}tETn
~ X2y |16 =6 ]s
t

Kolar, Song, Ahmed, and Xing (2010)
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Networks With Jumps

Abrupt Change

Structure Variation: A, = |81 — 8| Time

05 0.4 0.6
Time t (i/n)

max Z’Y(@t; x") =\ Z |16"]]1 Sparsity
t t

{et}tETn
~ X2y |16 =6 ]s
t

Kolar, Song, Ahmed, and Xing (2010)
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Networks With Jumps

Abrupt Change

Structure Variation: A, = |81 — 8| Time

08 0.4 0.6
Time t (i/n)

max Z’Y(@t; x") =\ Z |16"]]1 Sparsity
{0 tern -

— A2 Z H@t — Ot*1]|2 Structural Changes
¢

Kolar, Song, Ahmed, and Xing (2010)
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Networks With Jumps

Abrupt Change

Structure Variation: A, = |81 — 8| Time

08 0.4 0.6
Time t (i/n)

max Z’Y(@t; x") =\ Z |16"]]1 Sparsity
{0 tern -

— A2 Z H@t — Ot*1]|2 Structural Changes
¢

Fused Penalty (Tibshirani et al., 2005)

Kolar, Song, Ahmed, and Xing (2010)
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Drosophila Life Cycle
Data from Arbeitman et al. (2002)

66 microarray measurements across
full life cycle

Four stages in the life cycle

- embryo
D hil
- larva Life Gycle
- pupal
L%
- adult /
3

Analyze subset of 588 genes related
to development

Kolar, Song, Ahmed, and Xing (2010)
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Estimated Dynamic Network

molecular

function

M. Kolar (Chicago Booth)

biological

process

Estimating Time-Varying Networks

cellular

component

November 20, 2013
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Transient Group Interactions
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Known Gene Interactions

IRNRNALINNNI
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Known Gene Interactions
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Known Gene Interactions
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Theoretical Properties

Theorem (Kolar and Xing (2012c))

Under suitable technical assumptions the graph G™ is recovered with
exponentially high probability for any fized point T € [0, 1].

Fisher information matrix:

Qp = E[V?logPe: [X,|Xall,a € V.7 € [0,1]
- bounded eigenvalues

- incoherence condition
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Theoretical Properties

Theorem (Kolar and Xing (2012c))

Under suitable technical assumptions the graph G™ is recovered with
exponentially high probability for any fized point T € [0, 1].

Fisher information matrix:

Qp = E[V?logPe: [X,|Xall,a € V.7 € [0,1]
- bounded eigenvalues

- incoherence condition

Smoothness: X! = (of,) are smooth functions of time

Kernel satisfies regularity conditions
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Theoretical Properties

Theorem (Kolar and Xing (2012c))

Under suitable technical assumptions the graph G7 is recovered with
exponentially high probability for any fized point T € [0, 1].
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Theoretical Properties

Theorem (Kolar and Xing (2012c))

Under suitable technical assumptions the graph G7 is recovered with
exponentially high probability for any fized point T € [0, 1].

vlog p

nl/3 2

Parameters: \ <
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Theoretical Properties

Theorem (Kolar and Xing (2012c))

Under suitable technical assumptions the graph G7 is recovered with
exponentially high probability for any fized point T € [0, 1].

Toss 1
Parameters: \ < YA%P h = p~3
nl/3 2
) 3
Sparsity: Snlgj%,p =o0(1) (s — maximal node degree)
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Theoretical Properties

Theorem (Kolar and Xing (2012c))

Under suitable technical assumptions the graph G7 is recovered with
exponentially high probability for any fized point T € [0, 1].

Viogp 1 = 3

nl/3 2

Parameters: \ <

3
Sparsity: Snlgj%,p =o0(1) (s — maximal node degree)

Signal strength: O, = minecp- |07 = Q2 <%)
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Theoretical Properties

Theorem (Kolar and Xing (2012c))

Under suitable technical assumptions the graph G™ is recovered with
exponentially high probability for any fized point T € [0, 1].

Toss 1
Parameters: \ < YA%P h = p~3
nl/3 2
) 3
Sparsity: Sn?/%p =o0(1) (s — maximal node degree)

Signal strength: O, = mineepg- |07 = Q <@>

ni/3

n,p—r0o0

P [graph not recovered] = O (exp (—C’S_gnh +C'logp)) ——0
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Simulation Results

Chain Graph

10041 BDp=-00
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Scaled sample size n/(s*°1og"%(p))
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Thank you!
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