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Historically, the overriding academic achievement of 
our field (stat) has been to develop a framework 

for making quantitatively rigorous inference.
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Inference depends on a 
statistical model

world
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parameter estimates
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“All models are wrong.
Some models are useful.”



This talk will discuss network data

Graph = (node set, edge set)

Networks or graphs are 
useful as a way of simplifying 
a complex system of 
interactions.

Facebook: edges could 
represent posting / 
commenting / liking

Biology:  edges could 
represent something causal 
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(a) Zachary’s karate club network . . .
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Figure 5: Depiction of several small social networks that are common test sets for community detection algorithms
and their network community profile plots. (5(a)–5(b)) Zachary’s karate club network. (5(c)–5(d)) A network of
dolphins. (5(e)–5(f)) A network of monks. (5(g)–5(h)) A network of researchers researching networks.
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Partitions, clusters, modularities, 
communities represent latent structure

• Edges simplify the underlying 
dyadic relationships.

• Communities suggest some 
latent structure in generating 
mechanism.

Algorithmic aim:  
put “similar” nodes in the same set and 
“different” nodes in different sets.



Local clustering algorithms were 
first proposed by Spielman and Teng. 

• Spielman and Teng, 2008.  “A local clustering 
algorithm for massive graphs and its application 
to nearly-linear time graph partitioning”

• really fast

• empirical success

• current theory:  

• perturbation bounds for graph 
conductance

• bounds for running time.



Local Graph Partitioning using PageRank Vectors

Reid Andersen
University of California, San Diego

Fan Chung
University of California, San Diego

Kevin Lang
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Abstract

A local graph partitioning algorithm finds a cut near a specified starting vertex, with a
running time that depends largely on the size of the small side of the cut, rather than the size
of the input graph. In this paper, we present an algorithm for local graph partitioning using
personalized PageRank vectors. We develop an improved algorithm for computing approximate
PageRank vectors, and derive a mixing result for PageRank vectors similar to that for random
walks. Using this mixing result, we derive an analogue of the Cheeger inequality for PageRank,
which shows that a sweep over a single PageRank vector can find a cut with conductance
�, provided there exists a cut with conductance at most f(�), where f(�) is ⌦(�2/ log m), and
where m is the number of edges in the graph. By extending this result to approximate PageRank
vectors, we develop an algorithm for local graph partitioning that can be used to a find a cut
with conductance at most �, whose small side has volume at least 2b, in time O(2b log3 m/�2).
Using this local graph partitioning algorithm as a subroutine, we obtain an algorithm that finds
a cut with conductance � and approximately optimal balance in time O(m log4 m/�3).

1 Introduction

One of the central problems in algorithmic design is the problem of finding a cut with a small
conductance. There is a large literature of research papers on this topic, with applications in
numerous areas.

Spectral partitioning, where an eigenvector is used to produce a cut, is one of the few approaches
to this problem that can be analyzed theoretically. The Cheeger inequality [4] shows that the
cut obtained by spectral partitioning has conductance within a quadratic factor of the optimum.
Spectral partitioning can be applied recursively, with the resulting cuts combined in various ways,
to solve more complicated problems; for example, recursive spectral algorithms have been used to
find k-way partitions, spectral clusterings, and separators in planar graphs [2, 8, 13, 14]. There is
no known way to lower bound the size of the small side of the cut produced by spectral partitioning,
and this adversely a↵ects the running time of recursive spectral partitioning.

Local spectral techniques provide a faster alternative to recursive spectral partitioning by avoid-
ing the problem of unbalanced cuts. Spielman and Teng introduced a local partitioning algorithm
called Nibble, which finds relatively small cuts near a specified starting vertex, in time proportional
to the volume of the small side of the cut. The small cuts found by Nibble can be combined to
form balanced cuts and multiway partitions in almost linear time, and the Nibble algorithm is
an essential subroutine in algorithms for graph sparsification and solving linear systems [15]. The
analysis of the Nibble algorithm is based on a mixing result by Lovász and Simonovits [9, 10],
which shows that cuts with small conductance can be found by simulating a random walk and
performing sweeps over the resulting sequence of walk vectors.
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A Local Clustering Algorithm for Massive Graphs and its

Application to Nearly-Linear Time Graph Partitioning∗

Daniel A. Spielman
Department of Computer Science
Program in Applied Mathematics

Yale University

Shang-Hua Teng
Department of Computer Science

Boston University

September 18, 2008

Abstract

We study the design of local algorithms for massive graphs. A local algorithm is one
that finds a solution containing or near a given vertex without looking at the whole graph.
We present a local clustering algorithm. Our algorithm finds a good cluster—a subset of
vertices whose internal connections are significantly richer than its external connections—
near a given vertex. The running time of our algorithm, when it finds a non-empty local
cluster, is nearly linear in the size of the cluster it outputs.

Our clustering algorithm could be a useful primitive for handling massive graphs, such as
social networks and web-graphs. As an application of this clustering algorithm, we present a
partitioning algorithm that finds an approximate sparsest cut with nearly optimal balance.
Our algorithm takes time nearly linear in the number edges of the graph.

Using the partitioning algorithm of this paper, we have designed a nearly-linear time
algorithm for constructing spectral sparsifiers of graphs, which we in turn use in a nearly-
linear time algorithm for solving linear systems in symmetric, diagonally-dominant matrices.
The linear system solver also leads to a nearly linear-time algorithm for approximating the
second-smallest eigenvalue and corresponding eigenvector of the Laplacian matrix of a graph.
These other results are presented in two companion papers.

∗This paper is the first in a sequence of three papers expanding on material that appeared first under the title
“Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems” [ST03].
The second paper, “Spectral Sparsification of Graphs” [ST08b] contains further results on partitioning graphs,
and applies them to producing spectral sparsifiers of graphs. The third paper, “Nearly-Linear Time Algorithms
for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems” [ST08a] contains the results
on solving linear equations and approximating eigenvalues and eigenvectors.

This material is based upon work supported by the National Science Foundation under Grant Nos. 0325630,
0634957, 0635102 and 0707522. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
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A local graph partitioning algorithm using heat kernel pagerank

Fan Chung

University of California at San Diego, La Jolla CA 92093, USA,
fan@ucsd.edu, http://www.math.ucsd.edu/~fan/

Abstract. We give an improved local partitioning algorithm using heat kernel pagerank, a modified
version of PageRank. For a subset S with Cheeger ratio (or conductance) h, we show that there are at
least a quarter of the vertices in S that can serve as seeds for heat kernel pagerank which lead to local
cuts with Cheeger ratio at most O(

√
h), improving the previously bound by a factor of log |S|.

1 Introduction

With the emergence of massive information networks, many previous algorithms are often no longer feasible.
A basic setup for a generic algorithm usually includes a graph as a part of its input. This, however, is no
longer possible for dealing with massive graphs with prohibitive large size. Instead, the (host) graph, such as
the WWW-graph or various social networks, is usually meticulously crawled, organized and stored in some
appropriate database. The local algorithms that we study here involve only “local access” of the database
of the host graph. For example, getting a neighbor of a specified vertex is considered to be a type of local
access. Of course, it is desirable to minimize the number of local accesses needed, hopefully independent of
n, the number of vertices in the host graph (which may as well be regarded as “infinity”). In this paper, we
consider a local algorithm that improves the performance bound of previous local partitioning algorithms.

Graph partitioning problems have long been studied and used for a wide range of applications, typically
along the line of divide-and-conquer approaches. Since the exact solution for graph partitioning is known to
be NP-complete [12], various approximation algorithms have been utilized. One of the best known partition
algorithms is the spectral algorithm. The vertices are ordered by using an eigenvector and only cuts which
are initial segments in such an ordering are considered. The advantage of such a “one-sweep” algorithm is to
reduce the number of cuts under consideration from an exponential number in n to a linear number. Still,
there is a performance guarantee within a quadratic order by using a relation between eigenvalues and the
Cheeger constant, called the Cheeger inequality. However, for a large graph (say, with a hundred million
vertices), the task of computing an eigenvector is often too costly and not competitive.

A local partitioning algorithm finds a partition that separates a subset of nodes of specified size near
specified seeds. In addition, the running time of a local algorithm is required to be proportional to the size
of the separated part but independent of the total size of the graph. In [21], Spielman and Teng first gave a
local partitioning algorithm using random walks. The analysis of their algorithm is based on a mixing result
of Lovász and Simonovits in their work on approximating the volume of convex body. The same mixing result
was also proved by Mihail earlier independently [19]. In a previous paper [1], a local partitioning algorithm
was given using PageRank, a concept first introduced by Brin and Page [3] in 1998 which has been widely
used for Web search algorithms. PageRank is a quantitative ordering of vertices based on random walks
on the Webgraph. The notion of PageRank which can be carried out for any graph is basically an efficient
way of organizing random walks in a graph. As seen in the detailed definition given later, PageRank can be
expressed as a geometric sum of random walks starting from the seed (or an initial probability distribution),
with its speed of propagation controlled by a jumping constant. The usual question in random walks is to
determine how many steps are required to get close to stationary distribution. In the use of PageRank, the

Detecting Sharp Drops in PageRank and a
Simplified Local Partitioning Algorithm

Reid Andersen and Fan Chung

University of California at San Diego, La Jolla CA 92093, USA,
fan@ucsd.edu, http://www.math.ucsd.edu/~fan/,

randerse@ucsd.edu, http://www.math.ucsd.edu/~randerse/

Abstract. We show that whenever there is a sharp drop in the numer-
ical rank defined by a personalized PageRank vector, the location of the
drop reveals a cut with small conductance. We then show that for any
cut in the graph, and for many starting vertices within that cut, an ap-
proximate personalized PageRank vector will have a sharp drop sufficient
to produce a cut with conductance nearly as small as the original cut.
Using this technique, we produce a nearly linear time local partitioning
algorithm whose analysis is simpler than previous algorithms.

1 Introduction

When we are dealing with computational problems arising in complex networks
with prohibitively large sizes, it is often desirable to perform computations whose
cost can be bounded by a function of the size of their output, which may be quite
small in comparison with the size of the whole graph. Such algorithms we call
local algorithms (see [1]). For example, a local graph partitioning algorithm finds
a cut near a specified starting vertex, with a running time that depends on the
size of the small side of the cut, rather than the size of the input graph.

The first local graph partitioning algorithm was developed by Spielman and
Teng [8], and produces a cut by computing a sequence of truncated random
walk vectors. A more recent local partitioning algorithm achieves a better run-
ning time and approximation ratio by computing a single personalized PageRank
vector [1]. Because a PageRank vector is defined recursively (as we will describe
in the next section), a sweep over a single approximate PageRank vector can
produce cuts with provably small conductance. Although this use of PageRank
simplified the process of finding cuts, the analysis required to extend the ba-
sic cut-finding method into an efficient local partitioning algorithm remained
complicated.

In this paper, we consider the following consequence of the personalized
PageRank equation,

p = αv + (1 − α)pW,
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Finding Sparse Cuts Locally Using Evolving Sets

Reid Andersen and Yuval Peres

November 23, 2008

Abstract

A local graph partitioning algorithm finds a set of vertices with small conductance (i.e. a
sparse cut) by adaptively exploring part of a large graph G, starting from a specified vertex.
For the algorithm to be local, its complexity must be bounded in terms of the size of the set
that it outputs, with at most a weak dependence on the number n of vertices in G. Previous
local partitioning algorithms find sparse cuts using random walks and personalized PageRank.
In this paper, we introduce a randomized local partitioning algorithm that finds a sparse cut by
simulating the volume-biased evolving set process, which is a Markov chain on sets of vertices. We
prove that for any set of vertices A that has conductance at most φ, for at least half of the starting
vertices in A our algorithm will output (with probability at least half), a set of conductance
O(φ1/2 log1/2 n). We prove that for a given run of the algorithm, the expected ratio between
its computational complexity and the volume of the set that it outputs is O(φ−1/2 polylog(n)).
In comparison, the best previous local partitioning algorithm, due to Andersen, Chung, and
Lang, has the same approximation guarantee, but a larger ratio of O(φ−1 polylog(n)) between
the complexity and output volume. Using our local partitioning algorithm as a subroutine, we
construct a fast algorithm for finding balanced cuts. Given a fixed value of φ, the resulting
algorithm has complexity (m + nφ−1/2)) · O(polylog(n)) and returns a cut with conductance
O(φ1/2 log1/2 n) and volume at least vφ/2, where vφ is the largest volume of any set with
conductance at most φ.

1

Local Partitioning for Directed Graphs Using
PageRank

Reid Andersen1, Fan Chung2, and Kevin Lang3

1 Microsoft Research, Redmond WA 98052
reidan@microsoft.com

2 University of California, San Diego, La Jolla CA 92093-0112
fan@ucsd.edu

3 Yahoo! Research, Santa Clara CA 95054
langk@yahoo-inc.com

Abstract. A local partitioning algorithm finds a set with small conduc-
tance near a specified seed vertex. In this paper, we present a generaliza-
tion of a local partitioning algorithm for undirected graphs to strongly
connected directed graphs. In particular, we prove that by computing a
personalized PageRank vector in a directed graph, starting from a single
seed vertex within a set S that has conductance at most α, and by per-
forming a sweep over that vector, we can obtain a set of vertices S′ with
conductance ΦM (S′) = O(

√
α log |S|). Here, the conductance function

ΦM is defined in terms of the stationary distribution of a random walk
in the directed graph. In addition, we describe how this algorithm may
be applied to the PageRank Markov chain of an arbitrary directed graph,
which provides a way to partition directed graphs that are not strongly
connected.

1 Introduction

In directed networks like the world wide web, it is critical to develop algorithms
that utilize the additional information conveyed by the direction of the links. Algo-
rithms for web crawling, web mining, and search ranking, all depend heavily on the
directedness of the graph. For the problem of graph partitioning, it is extremely
challenging to develop algorithms that effectively utilize the directed links.

Spectral algorithms for graph partitioning have natural obstacles for gener-
alizations to directed graphs. Nonsymmetric matrices do not have a spectral
decomposition, meaning there does not necessarily exist an orthonormal basis of
eigenvectors. The stationary distribution for random walks on directed graphs
is no longer determined by the degree sequences. In the earlier work of Fill [7]
and Mihail [12], several generalizations for directed graphs were examined for
regular graphs. Lovász and Simonovits [11] established a bound for the mixing
rate of an asymmetric ergodic Markov chain in terms of its conductance. When
applied to the Markov chain of a random walk in a strongly connected directed
graph, their results can be used to identify a set of states of the Markov chain
with small conductance. Algorithms for finding sparse cuts, based on linear and
semidefinite programming and metric embeddings, have also been generalized to

A. Bonato and F.R.K. Chung (Eds.): WAW 2007, LNCS 4863, pp. 166–178, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



This talk aims to provide a statistical 
framework for local clustering by 

(1)  showing that sparse and transitive 
Stochastic Blockmodels (aka planted partition 
models) naturally lead to local clustering.

(2)  illustrating how the blessing of transitivity 
makes small clusters easy to estimate (both 
statistically and algorithmically).



• K = number of blocks

• s = population of each block.  So, all blocks 
have equal population.

• r = probability of an out-of-block connection 

• p = probability of an in-block connection

n = KsSo,

Consider the planted partition model
(a simplified Stochastic Blockmodel)

Assume r<p.
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Adjacency matrix from the Stochastic 
Blockmodel

We want to estimate the partition of the nodes Z.



Extensive literature studies the 
estimation of Z

• Started in IEEE community

• McSherry.  2001. “Spectral partitioning of 
random graphs.”

• Dasgupta, Hopcroft, and McSherry.  2004. 
“Spectral analysis of random graphs with 
skewed degree distributions.”

• Great expansion in literature over past 4 
years . . .



A nonparametric view of network models and
Newman–Girvan and other modularities
Peter J. Bickela,1 and Aiyou Chenb
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Edited by Stephen E. Fienberg, Carnegie Mellon University, Pittsburgh, PA, and approved October 13, 2009 (received for review July 2, 2009)

Prompted by the increasing interest in networks in many fields,
we present an attempt at unifying points of view and analyses of
these objects coming from the social sciences, statistics, probability
and physics communities. We apply our approach to the Newman–
Girvan modularity, widely used for “community” detection, among
others. Our analysis is asymptotic but we show by simulation and
application to real examples that the theory is a reasonable guide
to practice.

modularity | profile likelihood | ergodic model | spectral clustering

T he social sciences have investigated the structure of small
networks since the 1970s, and have come up with elaborate

modeling strategies, both deterministic, see Doreian et al. (1) for
a view, and stochastic, see Airoldi et al. (2) for a view and recent
work. During the same period, starting with the work of Erdös
and Rényi (3), a rich literature has developed on the probabilistic
properties of stochastic models for graphs. A major contribution
to this work is Bollobás et al. (4). On the whole, the goals of the
analyses of ref. 4, such as emergence of the giant component, are
not aimed at the statistical goals of the social science literature we
have cited.

Recently, there has been a surge of interest, particularly in the
physics and computer science communities in the properties of
networks of many kinds, including the Internet, mobile networks,
the World Wide Web, citation networks, email networks, food
webs, and social and biochemical networks. Identification of “com-
munity structure” has received particular attention: the vertices in
networks are often found to cluster into small communities, where
vertices within a community share the same densities of connect-
ing with vertices in the their own community as well as different
ones with other communities. The ability to detect such groups can
be of significant practical importance. For instance, groups within
the worldwide Web may correspond to sets of web pages on related
topics; groups within mobile networks may correspond to sets of
friends or colleagues; groups in computer networks may corre-
spond to users that are sharing files with peer-to-peer traffic, or
collections of compromised computers controlled by remote hack-
ers, e.g. botnets (5). A recent algorithm proposed by Newman and
Girvan (6), that maximizes a so-called “Newman–Girvan” mod-
ularity function, has received particular attention because of its
success in many applications in social and biological networks (7).

Our first goal is, by starting with a model somewhat less general
than that of ref. 4, to construct a nonparametric statistical frame-
work, which we will then use in the analysis, both of modularities
and parametric statistical models. Our analysis is asymptotic, let-
ting the number of vertices go to ∞. We view, as usual, asymptotics
as being appropriate insofar as they are a guide to what happens
for finite n. Our models can, on the one hand, be viewed as special
cases of those proposed by ref. 4, and on the other, as encompass-
ing most of the parametric and semiparametric models discussed
in Airoldi et al. (2) from a statistical point of view and in Chung and
Lu (8) for a probabilistic one. An advantage of our framework is
the possibility of analyzing the properties of the Newman–Girvan
modularity, and the reasons for its success and occasional fail-
ures. Our approach suggests an alternative modularity which is, in

principle, “fail-safe” for rich enough models. Moreover, our point
of view has the virtue of enabling us to think in terms of “strength
of relations” between individuals not necessarily clustering them
into communities beforehand.

We begin, using results of Aldous and Hoover (9), by introduc-
ing what we view as the analogues of arbitrary infinite population
models on infinite unlabeled graphs which are “ergodic” and from
which a subgraph with n vertices can be viewed as a piece. This
development of Aldous and Hoover can be viewed as a gener-
alization of deFinetti’s famous characterization of exchangeable
sequences as mixtures of i.i.d. ones. Thus, our approach can also be
viewed as a first step in the generalization of the classical construc-
tion of complex statistical models out of i.i.d. ones using covariates,
information about labels and relationships.

It turns out that natural classes of parametric models which
approximate the nonparametric models we introduce are the
“blockmodels” introduced by Holland, Laskey and Leinhardt
ref. 10; see also refs. 2 and 11, which are generalizations of the
Erdös–Rényi model. These can be described as follows.

In a possibly (at least conceptually) infinite population (of ver-
tices) there are K unknown subcommunities. Unlabeled individ-
uals (vertices) relate to each other through edges which for this
paper we assume are undirected. This situation leads to the follow-
ing set of probability models for undirected graphs or equivalently
the corresponding adjacency matrices {Aij : i, j ≥ 1}, where Aij =
1 or 0 according as there is or is not an edge between i and j.

1. Individuals independently belong to community j with
probability πj, 1 ≤ j ≤ K ,

∑K
j=1 πj = 1.

2. A symmetric K ×K matrix {Pkl : 1 ≤ k, l ≤ K} of probabil-
ities is given such that Pab is the probability that a specific
individual i relates to individual j given that i ∈ a, j ∈ b.
The membership relations between individuals are estab-
lished independently. Thus 1 − ∑

1≤a,b≤K πaπbPab is the
probability that there is no edge between i and j.

The Erdös–Rényi model corresponds to K = 1.
We proceed to define Newman–Girvan modularity and an alter-

native statistically motivated modularity. We give necessary and
sufficient conditions for consistency based on the parameters of
the block model, properties of the modularities, and average
degree of the graph. By consistency we mean that the modular-
ities can identify the members of the block model communities
perfectly. We also give examples of inconsistency when the con-
ditions fail. We then study the validity of the asymptotics in a
limited simulation and apply our approach to a classical small
example, the Karate Club and a large set of Private Branch
Exchange (PBX) data. We conclude with a discussion and some
open problems.

Author contributions: P.J.B. and A.C. performed research and analyzed data.
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Stochastic blockmodels with a growing number of classes
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SUMMARY
We present asymptotic and finite-sample results on the use of stochastic blockmodels for the

analysis of network data. We show that the fraction of misclassified network nodes converges
in probability to zero under maximum likelihood fitting when the number of classes is allowed
to grow as the root of the network size and the average network degree grows at least poly-
logarithmically in this size. We also establish finite-sample confidence bounds on maximum-
likelihood blockmodel parameter estimates from data comprising independent Bernoulli random
variates; these results hold uniformly over class assignment. We provide simulations verifying
the conditions sufficient for our results, and conclude by fitting a logit parameterization of a
stochastic blockmodel with covariates to a network data example comprising self-reported school
friendships, resulting in block estimates that reveal residual structure.

Some key words: Likelihood-based inference; Social network analysis; Sparse random graph; Stochastic blockmodel.

1. INTRODUCTION
The global structure of social, biological, and information networks is sometimes envi-

sioned as the aggregate of many local interactions whose effects propagate in ways that are
not yet well understood. There is increasing opportunity to collect data on an appropriate
scale for such systems, but their analysis remains challenging (Goldenberg et al., 2009). Here
we analyse a statistical model for network data known as the single-membership stochas-
tic blockmodel. Its salient feature is that it partitions the N nodes of a network into K dis-
tinct classes whose members all interact similarly with the network. Blockmodels were first
associated with the deterministic concept of structural equivalence in social network analysis
(Lorrain & White, 1971), where two nodes were considered interchangeable if their connec-
tions were equivalent in a formal sense. This concept was adapted to stochastic settings and
gave rise to the stochastic blockmodel in the work by Holland et al. (1983) and Fienberg et al.
(1985). The model and extensions thereof have since been applied in a variety of disciplines
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Spectral Clustering of Graphs with General Degrees in the Extended
Planted Partition Model
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Abstract
In this paper, we examine a spectral clustering algorithm for similarity graphs drawn from a simple
random graph model, where nodes are allowed to have varying degrees, and we provide theoretical
bounds on its performance. The random graph model we study is the Extended Planted Partition
(EPP) model, a variant of the classical planted partition model.

The standard approach to spectral clustering of graphs is to compute the bottom k singular vec-
tors or eigenvectors of a suitable graph Laplacian, project the nodes of the graph onto these vectors,
and then use an iterative clustering algorithm on the projected nodes. However a challenge with
applying this approach to graphs generated from the EPP model is that unnormalized Laplacians
do not work, and normalized Laplacians do not concentrate well when the graph has a number of
low degree nodes.

We resolve this issue by introducing the notion of a degree-corrected graph Laplacian. For
graphs with many low degree nodes, degree correction has a regularizing effect on the Laplacian.
Our spectral clustering algorithm projects the nodes in the graph onto the bottom k right singular
vectors of the degree-corrected random-walk Laplacian, and clusters the nodes in this subspace.
We show guarantees on the performance of this algorithm, demonstrating that it outputs the correct
partition under a wide range of parameter values. Unlike some previous work, our algorithm does
not require access to any generative parameters of the model.
Keywords: Spectral clustering, unsupervised learning, normalized Laplacian

1. Introduction

Spectral clustering of similarity graphs is a fundamental tool in exploratory data analysis, which
has enjoyed much empirical success (Shi and Malik, 2000; Ng et al., 2002; von Luxburg, 2007) in
machine-learning. In this paper, we examine a spectral clustering algorithm for similarity graphs
drawn from a simple random graph model, where nodes are allowed to have varying degrees, and
we provide theoretical bounds on its performance. Such clustering problems arise in the context
of partitioning social network graphs to reveal hidden communities, or partitioning communication
networks to reveal groups of nodes that frequently communicate.

The random graph model we study is the Extended Planted Partition (EPP) model, a variant of
the classical planted partition model. A graph G = (V,E) generated from this model has a hidden
partition V1, . . . , V

k

, as well as a number d
u

associated with each node u. If two nodes u and v
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Abstract: The stochastic block model (SBM) is a probabilistic model de-
signed to describe heterogeneous directed and undirected graphs. In this
paper, we address the asymptotic inference in SBM by use of maximum-
likelihood and variational approaches. The identifiability of SBM is proved
while asymptotic properties of maximum-likelihood and variational estima-
tors are derived. In particular, the consistency of these estimators is settled
for the probability of an edge between two vertices (and for the group pro-
portions at the price of an additional assumption), which is to the best
of our knowledge the first result of this type for variational estimators in
random graphs.
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April 30, 2012

Abstract

We present a method to estimate block membership of nodes in a ran-
dom graph generated by a stochastic blockmodel. We use an embedding
procedure motivated by the random dot product graph model, a partic-
ular example of the latent position model. The embedding associates
each node with a vector; these vectors are clustered via minimization
of a square error criterion. We prove that this method is consistent for
assigning nodes to blocks, as only a negligible number of nodes will be
mis-assigned. We prove consistency of the method for directed and undi-
rected graphs. The consistent block assignment makes possible consistent
parameter estimation for a stochastic blockmodel. We extend the result
in the setting where the number of blocks grows slowly with the num-
ber of nodes. Our method is also computationally feasible even for very
large graphs. We compare our method to Laplacian spectral clustering
through analysis of simulated data and a graph derived from Wikipedia
documents.

1 Background and Overview

Network analysis is rapidly becoming a key tool in the analysis of modern
datasets in fields ranging from neuroscience to sociology to biochemistry. In
each of these fields, there are objects, such as neurons, people, or genes, and
there are relationships between objects, such as synapses, friendships, or pro-
tein interactions. The formation of these relationships can depend on attributes
of the individual objects as well as higher order properties of the network as
a whole. Objects with similar attributes can form communities with similar
connective structure, while unique properties of individuals can fine tune the
shape of these relationships. Graphs encode the relationships between objects
as edges between nodes in the graph.

Clustering objects based on a graph enables identification of communities
and objects of interest as well as illumination of overall network structure. Find-
ing optimal clusters is di�cult and will depend on the particular setting and
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Abstract
The Stochastic Block Model (Holland et al., 1983) is a mixture model

for heterogeneous network data. Unlike the usual statistical framework,
new nodes give additional information about the previous ones in this
model. Thereby the distribution of the degrees concentrates in points
conditionally on the node class. We show under a mild assumption that
classification, estimation and model selection can actually be achieved
with no more than the empirical degree data. We provide an algorithm
able to process very large networks and consistent estimators based on it.
In particular, we prove a bound of the probability of misclassification of
at least one node, including when the number of classes grows.

1 Introduction

Strong attention has recently been paid to network models in many domains such
as social sciences, biology or computer science. Networks are used to represent
pairwise interactions between entities. For example, sociologists are interested
in observing friendships, calls and collaboration between people, companies or
countries. Genomicists wonder which gene regulates which other. But the
most famous examples are undoubtedly the Internet, where data traffic involves
millions of routers or computers, and the World Wide Web, containing millions
of pages connected by hyperlinks. A lot of other examples of real-world networks
are empirically treated in Albert and Barabási (2002), and book Faust and
Wasserman (1994) gives a general introduction to mathematical modelling of
networks, and especially to graph theory.

One of the main features expected from graph models is inhomogeneity.
Some articles, e.g. Bollobás et al. (2007) or Van Der Hofstad (2009), address
this question. In the Erdős-Rényi model introduced by Erdős and Rényi (1959)
and Gilbert (1959), all nodes play the same role, while most real-world networks
are definitely not homogeneous.
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Abstract

Spectral clustering is a fast and popular algorithm for finding clusters in net-
works. Recently, Chaudhuri et al. [1] and Amini et al. [2] proposed inspired
variations on the algorithm that artificially inflate the node degrees for improved
statistical performance. The current paper extends the previous statistical esti-
mation results to the more canonical spectral clustering algorithm in a way that
removes any assumption on the minimum degree and provides guidance on the
choice of the tuning parameter. Moreover, our results show how the “star shape”
in the eigenvectors–a common feature of empirical networks–can be explained
by the Degree-Corrected Stochastic Blockmodel and the Extended Planted Par-
tition model, two statistical models that allow for highly heterogeneous degrees.
Throughout, the paper characterizes and justifies several of the variations of the
spectral clustering algorithm in terms of these models.

1 Introduction

Our lives are embedded in networks–social, biological, communication, etc.– and many researchers
wish to analyze these networks to gain a deeper understanding of the underlying mechanisms. Some
types of underlying mechanisms generate communities (aka clusters or modularities) in the network.
As machine learners, our aim is not merely to devise algorithms for community detection, but also
to study the algorithm’s estimation properties, to understand if and when we can make justifiable in-
ferences from the estimated communities to the underlying mechanisms. Spectral clustering is a fast
and popular technique for finding communities in networks. Several previous authors have studied
the estimation properties of spectral clustering under various statistical network models (McSherry
[3], Dasgupta et al. [4], Coja-Oghlan and Lanka [5], Ames and Vavasis [6], Rohe et al. [7], Sussman
et al. [8] and Chaudhuri et al. [1]). Recently, Chaudhuri et al. [1] and Amini et al. [2] proposed two
inspired ways of artificially inflating the node degrees in ways that provide statistical regularization
to spectral clustering.

This paper examines the statistical estimation performance of regularized spectral clustering under
the Degree-Corrected Stochastic Blockmodel (DC-SBM), an extension of the Stochastic Block-
model (SBM) that allows for heterogeneous degrees (Holland and Leinhardt [9], Karrer and New-
man [10]). The SBM and the DC-SBM are closely related to the planted partition model and the
extended planted partition model, respectively. We extend the previous results in the following ways:
(a) In contrast to previous studies, this paper studies the regularization step with a canonical version
of spectral clustering that uses k-means. The results do not require any assumptions on the min-
imum expected node degree; instead, there is a threshold demonstrating that higher degree nodes
are easier to cluster. This threshold is a function of the leverage scores that have proven essential
in other contexts, for both graph algorithms and network data analysis (see Mahoney [11] and ref-
erences therein). These are the first results that relate leverage scores to the statistical performance

1



Current theory suggests that three 
quantities regulate the difficulty of 

estimating Z.

1. Edge sparsity.  More edges are better.

2. Size of the smallest cluster.  Bigger is better. 

3. Difference between in-block and out-of-
block probabilities (when they are equal the 
model is unidentifiable!)



(1) Sparse and transitive models (stochastic block 
or planted partition) naturally lead to local 
clustering with large p, vanishing r.

(2)  this blessing of transitivity makes small 
clusters easy to estimate (both statistically and 
algorithmically), even under “semi-parametric” 
models

A statistical framework for local clustering 



Empirical networks are 
sparse and transitive.

• Empirically, the average node degree in most 
networks is between 10 and 100, even in 
“massive graphs.”

• Moreover, most networks have many more 
triangles than we would expect under an 
Erdős–Rényi random graph.



Transitivity:   Friends-of-friends are 
likely to be friends.

v

u

i?
?

v

u

i

two-star triangle

Another popular measure of transitivity is the clustering coefficient.
(Watts and Strogatz 1998)



Under the planted partition model with r < p.
a) If p goes to zero, then you remove transitivity.
b) If p is bounded from below, then block size 
cannot grow faster than the expected degree. 



(1) p� = P (Auv = 1|Aiu = Aiv = 1)

p�  p

Proposition 1. Under the four parameter Stochastic Block-

model with r  p,

a) if p ! 0, then

p� = P (Auv = 1|Aiu = Aiv = 1) ! 0.

b) if p is bounded from below, then

s = O(�n)

where s is the population of each block and �n is the

expected node degree.

Definition 1. Suppose A 2 {0, 1}(n+s)⇥(n+s)
is an adja-

cency matrix and S⇤ is a set of nodes with |S⇤| = s. For

j 2 Sc
⇤, define

d⇤j =
X

`2Sc⇤

A`j.

If

(1) i 2 S⇤ and j 2 Sc
⇤ implies

P (Aij = 1) 
d⇤j
n
,

(2) i, j 2 S⇤ implies P (Aij = 1) � pin,
(3) {Aij : 8j and 8i 2 S⇤} are mutually independent

then A follows the local degree-corrected Stochastic

Blockmodel with parameters S⇤, pin.

1

Similar results to part a) hold under the more 
general Exchangeable Random Graph Model. 

Under the planted partition model with r < p.
a) If p goes to zero, then you remove transitivity.
b) If p is bounded from below, then block size 
cannot grow faster than the expected degree. 



• In planted partition model with bounded expected 
degree, transitivity implies:

The blessing of transitivity 

(i) p > ✏ > 0, (ii) r = O(1/n), and (iii) s = O(1)



Previous results suggest 
estimation could be very difficult.

• Previous results require (1) growing degrees 
and (2) growing blocks

• We want (1) bounded degree and thus (2) 
bounded blocks

• Still possible because r --> 0 and p is fixed.



Blessing of transitivity doesn’t make “bad” edges 
disappear.  It makes “bad” triangles disappear.

(1)  Out-of-block edges can be common. O(n) 

(2)  Out-of-block triangles are unlikely.  O(1) 

(3)  In-block triangles are common.  O(n)

Note:  We look at triangles for computational purposes.  
Could look for 4-cliques, then (2) becomes O(1/n) and 
(3) gets a new constant.

In sparse and transitive planted partition model



Related research
• R, Qin, Fan 2012 “Highest dimensional Stochastic 

Blockmodel with a regularized estimator”

• used the restricted MLE

• Verzelen and Arias-Castro, 2013. “Community 
Detection in Sparse Random Networks”

• Hypothesis testing 

• Ho: massive, sparse Erdos–Rényi

• Ha: hidden block, growing faster than log(N).

• Number of triangles is a powerful test statistic.

http://arxiv.org/find/math/1/au:+Verzelen_N/0/1/0/all/0/1
http://arxiv.org/find/math/1/au:+Verzelen_N/0/1/0/all/0/1
http://arxiv.org/find/math/1/au:+Arias_Castro_E/0/1/0/all/0/1
http://arxiv.org/find/math/1/au:+Arias_Castro_E/0/1/0/all/0/1
http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model
http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model


Empirical networks contain 
small communities.

• Leskovec, Lang, Dasgupta, 
Mahoney 2008.  In large 
empirical networks, 
communities with smallest 
conductance are no larger than 
100 nodes.

• Transitivity plays a key role and 
we should use triangles to 
discover the local clusters.

Community structure in large networks 33
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Figure 13: [Best viewed in color.] Network community profile plots with (in red) and without (in green) 1-
whiskers, for each of the six networks shown Figure 6. Whiskers were removed as described in the text. In the
former case, we plot results for the full network, and in the latter case, we plot results for the largest bi-connected
component.
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Abstract

High triangle density — the graph property stating that most two-hop paths belong to a
triangle — is a common signature of social networks. This paper studies triangle-dense graphs
from a structural perspective. We prove constructively that most of the content of a triangle-
dense graph is contained in a disjoint union of radius 2 dense subgraphs. This result quantifies
the extent to which triangle-dense graphs resemble unions of cliques. We also show that our
algorithm recovers planted clusterings in stable k-median instances.

1 Introduction

Can the special structure possessed by social networks be exploited algorithmically? Answering this
question requires a formal definition of “social network structure.” Extensive work on this topic
has generated countless proposals but little consensus (see e.g. [CF06]). The most oft-mentioned
(and arguably most validated) statistical properties of social networks include heavy-tailed degree
distributions [BA99, BKM+00, FFF99], a high density of triangles [WS98, SCW+10, UKBM11]
and other dense subgraphs or “communities” [For10, GN02, New03, New06, LLDM08], and low
diameter and the small world property [Kle00a, Kle00b, Kle01, New01].

Much of the recent mathematical work on social networks has focused on the important goal
of developing generative models that produce random networks with many of the above statistical
properties. Well-known examples of such models include preferential attachment [BA99] and related
copying models [KRR+00], Kronecker graphs [CZF04, LCK+10], and the Chung-Lu random graph
model [CL02b, CL02a]. A generative model articulates a hypothesis about what “real-world”
social networks look like, and is directly useful for generating synthetic data. Once a particular
generative model of social networks is adopted, a natural goal is to design algorithms tailored
to perform well on the instances generated by the model. It can also be used as a proxy to
study the effect of random processes (like edge deletions) on a network. Examples of such results
include [AJB00, LAS+08, MS10].

∗Supported in part by the ONR PECASE Award of the second author.
†This research was supported in part by NSF Awards CCF-1016885 and CCF-1215965, an AFOSR MURI grant,

and an ONR PECASE Award.
‡Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a

wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.
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(1) Sparse and transitive models (stochastic block 
or planted partition) naturally lead to local 
clustering with large p, vanishing r.

(2)  this blessing of transitivity makes small 
clusters easy to estimate (both statistically and 
algorithmically), even under “semi-parametric” 
models

A statistical framework for local clustering 



Weaving together the two threads.

• Started off talking about local clustering 
algorithms.

• Then, we forgot that and used SBM + sparsity 
+ transitivity to get a model with small blocks.

• Last section combines these two threads.

• Propose a local clustering algorithm that 
looks for triangles.

• Study the estimation performance of this 
algorithm under a local SBM.  This is a semi-
parametric network model.



There are global and local 
versions of our algorithm

Run single linkage hierarchical clustering 
(i.e. find maximum spanning tree) 

[L⌧L⌧ ]ijL
⌧
ij

Global:

L⌧
ij = [D�1/2

⌧ AD�1/2
⌧ ]ij

[D⌧ ]ii = deg(i) + ⌧

Define

where

Compute



There are global and local 
versions of our algorithm

“regularized graph Laplacian” proposed by
Chaudhuri, Chung, and Tsiatas (2012)
and Amini, Chen, Bickel, and Levina (2012).

tau = average degree 
is a reasonable choice  
(Qin, R 2013)

[L⌧L⌧ ]ijL
⌧
ij

Global:

L⌧
ij = [D�1/2

⌧ AD�1/2
⌧ ]ij

[D⌧ ]ii = deg(i) + ⌧

Define

where

Compute



Our local algorithm searches 
for edges in several triangles...



S

Initialize S = {Jennifer}



S

Examine edges crossing 
boundary of S. 



S

If an edge is in a triangle, 
add that node.



If an edge is in a triangle, 
add that node.

S



Iterate, until all crossing 
edges are not in a triangle.

S



Modification 1

• Tuning parameter:  the required number of 
triangles. 

• regulates {size vs density} of cluster



Find the entire path of solutions, for 
every seed node:

This is a similarity matrix. 
Use it to perform single linkage hierarchical clustering.

Cut the dendrogram at the required number of triangles.
Returns ALL local clusters.

O3
ij Number of triangles that contain edge (i,j).

O3 2 Rn⇥n. O3
ij = [AA]ijAij

Modification 1



Modification 2.

• Edges from high degree nodes need to be 
down weighted.  

• Replace the adjacency matrix with a row and 
column normalized version.



The regularized graph Laplacian

tau = average degree is a reasonable choice  
(Qin, R 2013)

Proposed for spectral clustering by 
Chaudhuri, Chung, and Tsiatas (2012) and 
Amini, Chen, Bickel, and Levina (2012).

[D⌧ ]ii = deg(i) + ⌧



O3
ij = [AA]ijAijReplace

with

Modification 2

O3,L
ij = [L⌧L⌧ ]ijL

⌧
ij



The local version of the algorithm only searches 
over edges connecting to the final cluster.

• To find one branch of the dendrogram . . .
2

Algorithm 1 LocalTrans(L, i, cut)

1. Initialize set S to contain node i.
2. For each edge (i, `) on the boundary of S

(i 2 S and ` /2 S) calculate O3,L
i` :

O3,L
i` = Li`

X

k

LikLk`.

3. If there exists any edge(s) (i, `) on the boundary of S with

O3,L
i` � cut, then add the corresponding node(s) ` to S and

return to step 2.

4. Return S.



A local model to study a 
local algorithm.

Since the algorithm only 
searches locally, we should have 

a “local model.” WAVE HANDS.  SHOW 
MODEL IN TWO PARTS.



Local and semi-parametric 
Stochastic Blockmodel

• Network model contains three parts
(i)   the seed node,
(ii)  its local block,
(iii) the rest of the network.

• Assume (iii) is sparse and is independent of 
edges from {(i) and (ii)} to (iii).

• No parametric / degree distribution / 
maximum degree assumptions on (iii).

• Asymptotically, (iii) grows and (ii) stays fixed.

• Node degrees in (ii) cannot grow too fast.

(iii) 
hairball.

(i)

(ii)



Local models
• First version is not degree corrected

• good performance with unweighted 
triangle counting (i.e. use A)

• This algorithm has not worked with real 
data.

• Second version is degree corrected.

• use L.

• This algorithm has worked with data.



Theorem
If: 
1)  correct seeding 
2)  ambient graph is sparse
then the local algorithm returns the 
correct clusters whp



Theorem
If: 
1)  correct seeding 
2)  ambient graph is sparse
then the local algorithm returns the 
correct clusters whp

Does not require:
1)  growing degrees
2)  growing s
3)  specified model on 
the hairball
4)  bounded degree in 
the hairball



Theorem

4

Theorem 2. Under the local Stochastic Blockmodel, ifX

i,j2Sc⇤

Aij  n�,

then

(1) cut = 1: for all i 2 S⇤, LocalTrans(A, i, cut = 1) =

S⇤ with probability greater than

1�
✓
1

2

s2(1� p2in)
s�2

+O(p2outns(s + �))

◆
.

(2) cut = 2: for all i 2 S⇤, LocalTrans(A, i, cut = 2) =

S⇤ with probability greater than

1�
�
s3(1� p2in)

s�3
+O(p3outns(s + �)2)

�
.

Probability does not converge to one when s is fixed.

If: 
1)  correct seeding 
2)  ambient graph is sparse
then the local algorithm returns the 
correct clusters whp

Does not require:
1)  growing degrees
2)  growing s
3)  specified model on 
the hairball
4)  bounded degree in 
the hairball



Similar theorem for the degree 
corrected model using Ltau

3

Theorem 1. Let A come from the local degree-corrected

Stochastic Blockmodel. Define � such thatX

i,j2Sc⇤

Aij  n�.

Set cut = [2(s� 1)pin + 2� + ⌧ ]�3
. If n is su�ciently large

and s � 3, then for any i 2 S⇤,

LocalTrans(L⌧ , i, cut) = S⇤

with probability at least

1�
�
1/2 s2(1� p2in)

s�2
+ s exp (�1/4(spin + �)) +O(n3✏�1

)

�
.

Probability does not converge to one when s is fixed.



The algorithm finds small 
communities in large networks.

• Two online social networks. 
    epinions and slashdot.

• Both 70,000+ nodes.  Done on my wimpy 
laptop, in R!

• Data from http://snap.stanford.edu

• Next slides show the induced subgraphs of 
several local clusters

http://snap.stanford.edu
http://snap.stanford.edu
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1. Local clustering is justified for several reasons.

a) new types of questions with massive networks,  
Dunbar’s number and other empirical evidence.

b) computation, visualization, interpretation, diagnostics

2. Since we want to make inferences, we need a model with 
local clusters.  Requires caution!

a) Forgetting the motivation of local clusters...

b) Sparse and transitive SBMs have small blocks.

3. Blessing of transitivity allows fast (local) algorithms and local 
inference with drastically reduced “global assumptions”

Recap
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