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Retina Eye movements

Cortex Mystery



A Pessimistic Estimate of the 
Time Required for an Eye to 
Evolve 

(500k years) 

Nilsson & Pelger (1994)

Evolution of the eye

that the eye...could have 
been formed by natural 
selection seems, I freely 
confess, absurd in the highest 
possible degree.

-- Charles Darwin (1859)



The evolution of eyes
Land & Fernald (1992)



http://redwood.berkeley.edu/wiki/VS298:_Animal_Eyes
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Hyperpolarization of photoreceptor results in
hyperpolarization of horizontal cells
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Analog VLSI retina
(Mead & Mahowald, 1989)



On vs. off cone
bipolar cells
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Efficient coding model of retina
(Karklin & Simoncelli 2012)replacements
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Figure 1: a. Schematic of the model (see text for description). The goal is to maximize information
transfer between images x and the neural response r, subject to metabolic cost of firing spikes. b.
Information about the stimulus is conveyed both by the arrangement of the filters and the steepness
of the neural nonlinearities. Top: two neurons encode two stimulus components (e.g. two pixels of
an image, x1 and x2) with linear filters (black lines) whose output is passed through scalar nonlinear
functions (thick color lines; thin color lines show isoresponse contours at evenly spaced output
levels). The steepness of the nonlinearities specifies the precision with which each projection is
represented: regions of steep slope correspond to finer partitioning of the input space, reducing the
uncertainty about the input. Bottom: joint encoding leads to binning of the input space according to
the isoresponse lines above. Grayscale shading indicates the level of uncertainty (entropy) in regions
of the input (lighter shades correspond to higher uncertainty). Efficient codes optimize this binning,
subject to input distribution, noise levels, and metabolic costs on the outputs.

Parameter λj specifies the trade-off between information gained by firing more spikes, and the cost
of generating them. It is difficult to obtain a biologically valid estimate for this parameter, and
ultimately, the value of sensory information gained depends on the behavioral task and its context
[26]. Alternatively, we can use λj as a Lagrange multiplier to enforce the constraint on the mean
output of each neuron.

Our goal is to adjust both the filters and the nonlinearities of the neural population so as to maximize
the expectation of (3) under the joint distribution of inputs and outputs, p(x, r). We assume the
filters are unit norm (∥wj∥=1) to avoid an underdetermined model in which the nonlinearity scales
along its input dimension to compensate for filter amplification. The nonlinearities fj are assumed
to be monotonically increasing. We parameterized the slope of the nonlinearity gj =dfj/dyj using
a weighted sum of Gaussian kernels,

gj(yj |cjk, µjk,σj) =
K
∑

k=1

cjk exp

(

−
(yj − µjk)2

2σ2
j

)

, (4)

with coefficients cjk≥0. The number of kernelsK was chosen for sufficiently flexible nonlinearity
(in our experimentsK = 500). We spaced µjk evenly over the range of yj and chose σj for smooth
overlap of adjacent kernels (kernel centers 2σj apart).

2.1 Computing mutual information

How can we compute the information transmitted by the nonlinear network of neurons? Mutual
information can be expressed as the difference between two entropies, I(X ;R) = H(X)−H(X |R).
The first term is the entropy of the data, which is constant (i.e. it does not depend on the model) and
can therefore be dropped from the objective function. The second term is the conditional differential
entropy and represents the uncertainty in the input after observing the neural response. It is computed
by taking the expectation over output values H(X |R) = Er

[

−
∫

p(x|r) ln p(x|r)dx
]

. In general,
computing the entropy of an arbitrary high dimensional distribution is not tractable. We make several
assumptions that allow us to approximate the posterior, compute its entropy, and maximize mutual
information. The posterior is proportional to the product of the likelihood and the prior, p(x|r) ∝
p(r|x)p(x); below we describe these two functions in detail.
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Objective function:
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Figure 2: In the presence of biologically realistic level of noise, the optimal filters are center-
surround and contain both On-center and Off-center profiles; the optimal nonlinearities are hard-
rectifying functions. a. The set of learned filters for 100 model neurons. b. In pixel coordinates,
contours of On-center (Off-center) filters at 50% maximum (minimum) levels. c. The learned non-
linearities for the first four model neurons, superimposed on distributions of filter outputs.

0

10

sp
/s
ec

1 16 −3 0 3
0

10

sp
/s
ec

0

12

24

sp
/s
ec

1 11 −3 0 3
0

30

60

sp
/s
ec

a b

Figure 3: a. A characterization of two retinal ganglion cells obtained with white noise stimulus
[31]. We plot the estimated linear filters, horizontal slices through the filters, and mean output as
a function of input (black line, shaded area shows one standard deviation of response). b. For
comparison, we performed the same analysis on two model neurons. Note that the spatial scales of
model and data filters are different.

in the number of On-center neurons (bottom left panel). In this case, increasing the number of
neurons restored the balance of On- and Off-center filters (not shown). In the case of vanishing
input and output noise, we obtain localized oriented filters (top left panel), and the nonlinearities are
smoothly accelerating functions that map inputs to an exponential output distribution (not shown).
These results are consistent with previous theoretical work showing that optimal nonlinearity in the
low noise regime maximizes the entropy of the output subject to response constraints [11, 7, 17].

How important is the choice of linear filters for efficient information transmission? We compared
the performance of different filtersets across a range of firing rates (Fig. 5). For each simulation, we
re-optimized the nonlinearities, adjusting λj’s for desired mean rate, while holding the filters fixed.
As a rough estimate of input entropyH(X), we used an upper bound – a Gaussian distribution with
the covariance of natural images. Our results show that when filters are mismatched to the noise
levels, performance is significantly degraded. At equivalent output rate, the “wrong” filters transmit
approximately 10 fewer bits; conversely, it takes about 50% more spikes to encode the same amount
of information.

We also compared the coding efficiency of networks with variable number of neurons. First, we
fixed the allotted population spike budget to 100 (per input), fixed the absolute output noise, and
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Efficient coding model of retina
(Karklin & Simoncelli 2012)
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Midget ganglion cells receive
input from midget bipolar cells.

Ratio is 1:1 in fovea.



Cone vs. retinal ganglion cell spacing
as a function of eccentricity
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Midget- and Parasol-cell dendritic field diameter
as a function of eccentricity
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Retinal ganglion cell sampling array
(shown at one dot for every 20 ganglion cells)

(from Anderson & Van Essen, 1995)



Letter size vs. eccentricity
(Anstis, 1974)







Eye movements



Human eye movements during viewing of an image

Yarbus (1967)
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Fixational eye movements
(drift)

(from Austin Roorda, UC Berkeley)



preference for specific directions of motion during the
task (Figure 2C, S3 and S4). Across subjects, absolute
trajectory length averaged across all individual trials
was similar. Relative to the underlying mosaic of
photoreceptors, the stimulus traversed a retinal dis-
tance equaling about 10.5 unique cones during each
750-ms presentation during natural viewing (an exam-
ple stimulus trajectory close to this average in shown in
Figure 2A). In 600 analyzed trials under the stabilized
condition, the residual stimulus motion that occurred
due to imperfections of the tracking and stabilization
techniques was small. Here, the stimulus traversed 0.4
cones on average across subjects. Expressed differently,
stimulus trajectory amplitudes under stabilization were
about 25 times less than in natural viewing (Figure 2C).
This analysis confirmed that the exact same set of cones
was stimulated during the stabilized condition, whereas
many more cones were stimulated during natural
viewing.

Given the nature of our orientation discrimination
acuity task (four main orientations of the Snellen E),
we wondered if the eye can adjust FEM relative to the
orientation of the optotype to maximize transient
information content (e.g. motion preferably perpen-
dicular to the bar orientation), and whether specific
motion traces offer advantages for the task compared
to others. In Figure 2D the same motion paths as in
Figure 2C are plotted, but now rotated relative to the
orientation of the optotype orientation during presen-
tation, and with indication of correct and incorrect
psychophysical responses. We observed no clear trends
in this analysis. In this short period of time the eye does
not seem to adjust its FEM behavior according to the
orientation of the letter, and certain directions of eye
motion do not appear to confer clear benefits.

Experiment 1: Discrimination benefits from FEM
at the resolution limit

Discrimination performance with retinal image
stabilization dropped on average by 23% across
subjects (Figure 3D; p , 0.05, two-tailed binomial z
test). Thus, fine spatial resolution was impaired in the
absence of retinal image motion due to FEM, or visual
acuity was enhanced by FEM. In fact, the visual
resolution achieved in our experimental setup was
higher than what simple spatial sampling models of the
cone mosaic would predict. For each subject, the
stimulus gap, or distance between adjacent bars of the
‘‘E,’’ was compared to the Nyquist limit (NC) of the
tested retinal location (Figure 1E). The stimulus gap
constitutes the primary image detail subjects use to
discriminate orientation (Rossi & Roorda, 2010b). For
each subject, the gap size was smaller than NC (gap

size/NC ¼ 0.61/0.90, 0.74/0.85, 0.63/0.80, 0.57/0.94
arcmin for S1 through S4, respectively).

Subjects performed similarly or better under the
incongruent than under the natural condition (Figure
3E; S1, p , 0.01; S2 and S3, p . 0.05; two-tailed
binomial z test, n¼;450). These findings demonstrate
that the visual system can benefit from retinal image
motion even when the activity is independent of FEM
at the time of stimulus presentation.

Experiment 2: Contrast reduction during
stabilization is not critical

To determine whether contrast was reduced under
stabilization and how performance may have been
affected, we devised a pair of experiments. The
perceived contrast of stabilized versus moving stimuli
was indeed reduced by about 20%, but performance
was similar (p . 0.05, two-tailed binomial z test, n ¼
;250) when subjects discriminated naturally moving
stimuli presented at full and reduced (80%) contrast
(Figure 4). These results suggest reduced contrast was

Figure 3. Stimulus motion improves acuity at the resolution
limit. (A) In natural viewing, the stimulus (‘‘E’’) is fixed in space
and the retinal cone mosaic (circles) moves due to fixational eye
motion (FEM, light blue arrow). (B) In stabilized viewing, the
stimulus moves with the retina (orange arrow), such that it
stays locked on the same cones during presentation. (C) In the
incongruent motion condition, the stimulus moves - while the
eye performs its habitual FEM - in a path according to a
previously recorded FEM trace. (D) Stimulus stabilization
reduced discrimination performance in all subjects by an
average of 23%. (E) Relative to the natural viewing condition,
subjects performed equally well or better when incongruent
motion was employed. Asterisk (*) denotes p value , 0.05.
Error bars are standard error of the mean.
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Retinal image motion helps pattern discrimination



Joint estimation of form and motion
(Alex Anderson, Ph.D. thesis)
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Primate visual cortex



V1 - topographic representation



Cortical magnification

courtesy of Arash Fazl



Cortical neurons 

• have elaborate dendritic and axonal arbors
• are highly organized by layer
• are interconnected in a ‘canonical microcircuit’

(Douglas and Martin, 2007)



V1 - simple cell receptive fields





V1 is highly overcomplete
Temporal reconstruction o f  the image 

The homunculus also has to face t'he problem that  the image is often nioving 

continuously, but is only represented by impulses a t  discrete moments in time. I n  

these days he often has to deal with visual images derived from cinema screens and 

television sets tha t  represent scenes sampled a t  quite long intervals, and we know 

IVb 

0 1mm
C I 

FIGURE8. A tracing of the outlines of the granule cells of area 17 in layers IVb  and IVc of 

monkey cortex, where the incoming geniculate fibres termmate (from fig. 3 c of Hubel & 

Wiesel 1972) The dots at the top lndlcate the calct~lated separation of the sample points 

coming In from the re t~na ,  allowing tmo per cycle of the higllest spatial frequency 

resolved. The misaligned vernier a t  rlght has a displac~ment corresponding to one sixth 

of the sample separation, or 5' for 60 cycle/deg optimum aclutp The 'grain' in the 

cortex appears to be much finer than In the retlna. 

that  he does a good job a t  interpreting them even when the sample rate is only 

16 s-l, as in amateur movies. One only has to watch a kitten playing, a cttt hunt- 

ing, or a bird alighting a t  dusk among the branches of a tree. to appreciate the 

importance and difficulty of the ~ ~ i s u a l  appreciation of motion. Considering this 

overwhelming importance it is surprising to find how slow are the receptors and 

how long is the latency for the message in the optic nerve, and e~-en  more surprising 

to find how well the system works in spite of this slowness. 

Recent psychophysical work has improved our understanding of these problems. 

At one time i t  was thought that image motion aided resolution (Narshall SI Talbot 

1942),but this was hard to believe because of the bll~rring effect of the eye's long 

LGN 
afferents

layer 4 
cortex

Barlow (1981)
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The “standard model” of  V1
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~85% of V1 function
not understood

~0.4

0.3-0.4

What is the other 85% of V1 doing?

Five problems with the current view:

• Biased sampling (single unit recording)

• Biased stimuli (bars, spots, gratings) 

• Biased theories (data-driven vs. 
functional theories)

• Interdependence and context (effect of 
intra-cortical inputs)

• Ecological deviance

Olshausen BA, Field DJ (2005)  How close are we 
to understanding V1?  Neural Computation, 17, 
1665-1699.



Single-unit electrophysiology



1 mm2 of cortex analyzes ca. 14 x 14 array of retinal
sample nodes and contains 100,000 neurons



1 mm2 of cortex contains 100,000 neurons
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Matrix of connections in visual cortex
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This table is a connectivity matrix for interconnections between visual conical areas in the macaque. Each row shows whether the area listed on the left sends outputs to the
areas listed along the top. Conversely, each column shows whether the area listed on the top receives inputs from the areas listed along the left. Large plus symbols ( + ) indicate
a pathway that has been reported in 1 or more full-length manuscripts: small plus symbols indicate pathways identified only in abstracts or unpublished studies. Specific citations
are listed in Table 5. Dots j ) indicate pathways explicitly rested and found to be absent. Blanks indicate pathways not carefully tested for. Question marks (?) denote pathways
whose existence is uncertain owing to conflicting reports in the literature. "NR" and "NR?" indicate nonreciprocal pathways, i.e.. connections absent in the indicated direction
even though the reciprocal connection has been reported. Shaded boxes along the diagonal represent intrinsic circuitry that exists within each area: these are not included among
the pathways tabulated in the following table.

ing the cortex prior to sectioning can facilitate the
recognition of subtle architectonic transitions (Ola-
varria and Van Sluyters, 1985; Tootell and Silverman,
1985).

Specific Visual Areas
In order to put the current map into perspective, it is
useful to comment on the layout of specific visual
areas, with emphasis on recently identified areas and
areas for which uncertainties in identification persist.

We will begin with the 9 areas of the occipital lobe.
First, there is a triplet of large, well-studied areas, VI,
V2, and V4, each of which contains a complete to-
pographic representation. These are surrounded an-
teriorly by a collection of smaller areas, 3 of which
have been mapped in some detail (MT, V3, and VP),
and the remainder of which are less well character-
ized (V3A, V4t, and VOT). V3A was originally iden-
tified and mapped by Van Essen and Zeki (1978), but
its borders have been revised (see area PIP below).

10 Organization of Macaque Visual Cortex • Felleman and Van Essen
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an absolute depth judgment with respect
to fixation, while fine stereopsis requires
the judgment of relative depth, i.e., com-
paring depth across space; (2) the partic-
ular coarse stereopsis task used requires
the monkey to discriminate a signal in
noise, while the fine task does not; (3)
the range of disparities is quite different.

Chowdhury and DeAngelis (2008) repli-
cate the finding that monkeys initially
trained on coarse stereopsis show im-
paired coarse depth discrimination when
muscimol is injected into MT. Remark-
ably, the same animals, after a second
round of training on fine stereopsis, are
unimpaired at either fine or coarse depth
discrimination by similar injections. More-
over, recordings in MT show that neuronal
responses are not altered by learning the
fine stereopsis task. Given the differences
between the tasks and the large number

of visual areas containing disparity-sensi-
tive neurons, one might not be surprised
to find different areas involved in the two
tasks. But it is quite unexpected that
merely learning one task would change
the contribution of areas previously in-
volved in the other. Chowdhury and
DeAngelis conclude that the change in
outcome reflects a change in neural de-
coding—decision centers that decode
signals to render judgments of depth,
finding MT signals unreliable for the fine
stereopsis task, switch their inputs to se-
lect some better source of disparity infor-
mation. Candidates include ventral
stream areas V4 or IT, where relative dis-
parity signals have been reported (Orban,
2008) and which contain far more neurons
than MT (Figure 1). When challenged
afresh with the coarse depth task, these
same decision centers may now find that

their new sources of information can solve
the coarse task as well as the old ones.
MT is no longer critical.

Perhaps in other monkeys MT would
never have a role in stereopsis at all.
ChowdhuryandDeAngelis’monkeyswere
trained simultaneously or previously to
discriminate motion, which engages MT.
Faced with a qualitatively similar random
dot stimulus, it might make sense for the
cortex to try to solve the new problem of
stereopsis with existing decoding strate-
gies. But if the animals were initially trained
on a different task—say, a texture discrim-
ination—MT might never be engaged at
all. It would also be interesting to see the
outcome if monkeys were trained on depth
tasks that were less different and could
be interleaved in the same sessions, for
example noise-limited depth judgments
using similar absolute or relative disparity

Figure 1. A Scaled Representation of the Cortical Visual Areas of the Macaque
Each colored rectangle represents a visual area, for the most part following the names and definitions used by Felleman and Van Essen (1991). The gray bands
connecting the areas represent the connections between them. Areas above the equator of the figure (reds, browns) belong to the dorsal stream. Areas below the
equator (blues, greens) belong to the ventral stream. Following Lennie (1998), each area is drawn with a size proportional to its cortical surface area, and the lines
connecting the areas each have a thickness proportional to the estimated number of fibers in the connection. The estimate is derived by assuming that each area
has a number of output fibers proportional to its surface area and that these fibers are divided among the target areas in proportion to their surface areas. The
connection strengths represented are therefore not derived from quantitative anatomy and furthermore represent only feedforward pathways, though most or all
of the pathways shown are bidirectional. The original version of this figure was prepared in 1998 by John Maunsell.
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Hierarchical Bayesian inference in visual cortex
(Lee & Mumford, 2003)

areas of the image are in shadow. Second, the high-level
knowledge of the identity of an individual suggests that a
face should have certain proportions, as measured from
the low-level data in V1. Both sets of information would
go into the full explanation of the image.

This basic formulation can also capture the interaction
among multiple cortical areas, such as V1, V2, V4, and
the inferotemporal cortex (IT). Note that although feed-
back goes all the way back to the LGN and it is simple to
include the LGN in the scheme, the computational role of
the thalamic nuclei could potentially be quite different.30

Hence we decide not to consider the various thalamic ar-
eas, the LGN, and the nuclei of the pulvinar, in this pic-
ture at present. The formalism that we introduce applies
to any set of cortical areas with arbitrary connections be-
tween them. But for simplicity of exposition, we assume
that our areas are connected like a chain. That is, we as-
sume that each area computes a set of features or beliefs,
which we now call xv1 , xv2 , xv4 , and xIT , and we make
the simplifying assumption that if, in the sequence of
variables (x0 , xv1 , xv2 , xv4 , xIT), any variable is fixed,
then the variables before and after it are conditionally in-
dependent. This means that we can factor the probabil-
ity model for these variables and the evidence x0 as

P!x0 , xv1 , xv2 , xv4 , xIT"

! P!x0!xv1"P!xv1!xv2"P!xv2!xv4"P!xv4!xIT"P!xIT"

and make our model an (undirected) graphical model or
Markov random field based on the chain of variables:

x0 ↔ xv1 ↔ xv2 ↔ xv4 ↔ xIT .

From this it follows that

P!xv1!x0 , xv2 , xv4 , xIT" ! P!x0!xv1"P!xv1!xv2"/Z1 ,

P!xv2!x0 , xv1 , xv4 , xIT" ! P!xv1!xv2"P!xv2!xv4"/Z2 ,

P!xv4!x0 , xv1 , xv2 , xIT" ! P!xv2!xv4"P!xv4!xIT"/Z4 .

More generally, in a graphical model one needs only po-
tentials #(xi , xj) indicating the preferred pairs of values
of directly linked variables xi and xj , and we have

P!xv1!x0 , xv2 , xv4 , xIT"

! #!x0 , xv1"#!xv1 , xv2"/Z!x0 , xv2" ,

P!xv2!x0 , xv1 , xv4 , xIT"

! #!xv1 , xv2"#!xv2 , xv4"/Z!vv1 , xv4",

P!xv4!x0 , xv1 , xv2 , xIT"

! #!xv2 , xv4"#!xv4 , xIT"/Z!xv2 , xIT",

where Z(xi , xj) is a constant needed to normalize the
function to a probability distribution. The potentials
must be learned from experience with the world and con-
stitute the guts of the model. This is a very active area
in machine learning research.4,6,8,19,20

In this framework each cortical area is an expert for in-
ferring certain aspects of the visual scene, but its infer-
ence is constrained by both the bottom-up data coming in
on the feedforward pathway (the first factor in the right-
hand side of each of the above equations) and the top-
down data feeding back (the second factor) [see Fig. 2(a)].

Each cortical area seeks to maximize by competition the
probability of its computed features (or beliefs) xi by com-
bining the top-down and bottom-up data with use of the
above formulas (the Z’s can be ignored). The system as a
whole moves, game theoretically, toward an equilibrium
in which each xi has an optimum value given all the other
x’s. In particular, at each point in time, a distribution of
beliefs exist at each level. Feedback from all higher ar-
eas can ripple back to V1 and cause a shift in the pre-
ferred beliefs computed in V1, which in turn can sharpen
and collapse the belief distribution in the higher areas.
Thus long-latency responses in V1 will tend to reflect in-
creasingly more global feedback from abstract higher-
level features, such as illumination and the segmentation
of the image into major objects. For instance, a faint
edge could turn out to be an important object boundary
after the whole image is interpreted, although the edge
was suppressed as a bit of texture during the first
bottom-up pass. The long-latency responses in IT, on the
other hand, will tend to reflect fine details and more-
precise information about a specific object.

The feedforward input drives the generation of the hy-
potheses, and the feedback from higher inference areas

Fig. 2. (a) Schematic of the proposed hierarchical Bayesian in-
ference framework in the cortex: The different visual areas
(boxes) are linked together as a Markov chain. The activity in
V1, x1 , is influenced by the bottom-up feedforward data x0 and
the probabilistic priors P(x1!x2) fed back from V2. The concept
of a Markov chain is important computationally because each
area is influenced mainly by its direct neighbors. (b) An alter-
native way of implementing hierarchical Bayesian inference by
using particle filtering and belief propagation: B1 and B2 are
bottom-up and top-down beliefs, respectively. They are sets of
numbers that reflect the conditional probabilities of the particles
conditioned on the context that has been incorporated by the be-
lief propagation so far. The top-down beliefs are the responses
of the deep layer pyramidal cells that project backward, and the
bottom-up beliefs are the activities of the responses of the super-
ficial layer pyramidal cells that project to the higher areas. The
potentials # are the synaptic weights at the terminals of the pro-
jecting axons. A hypothesis particle may link a set of particles
spanning several cortical areas, and the probability of this hy-
pothesis particle could be signified by its binding strength via ei-
ther synchrony or rapid synaptic weight changes.

1436 J. Opt. Soc. Am. A/Vol. 20, No. 7 /July 2003 T. S. Lee and D. Mumford
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What do you see?

Lorenceau & Shiffrar (1992);
Murray, Kersten, Schrater, Olshausen & Woods (2002)
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BOLD signal in V1 and LOC



Fig. 5 – Two views of thalamocortical pathways. The upper
figure illustrates a motor instruction to the lower motor
center, coming either from the cortex or from the upper parts
of the brainstem. Each can send an efference copy shown in
red to the thalamus. The lower figure shows the afferents to
the thalamus, also in red, all serving essentially the same
function as copies of motor instructions. Abbreviations: FO
first order, HO higher order.

Fig. 6 – Ramon y Cajal's (1911) illustration of the thalamic
branches given off by the mamillotegmental tract. The upper
figure (644) is a sagittal section (anterior to right, dorsal up)
that shows the principal mamillary tract (Fmpr) giving off the
mamillothalamic tract (Fthm) anteriorly and continuing
posteriorly as the mamillotegmental tract (Ftm). FM,
habenulo-peduncular tract. The lower figure (645) shows the
detail of the branching.

211B R A I N R E S E A R C H R E V I E W S 6 6 ( 2 0 1 1 ) 2 0 5 – 2 1 9

The conventional view

V1 V2 V3 … IT
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that shows the principal mamillary tract (Fmpr) giving off the
mamillothalamic tract (Fthm) anteriorly and continuing
posteriorly as the mamillotegmental tract (Ftm). FM,
habenulo-peduncular tract. The lower figure (645) shows the
detail of the branching.
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Fig. 5 – Two views of thalamocortical pathways. The upper
figure illustrates a motor instruction to the lower motor
center, coming either from the cortex or from the upper parts
of the brainstem. Each can send an efference copy shown in
red to the thalamus. The lower figure shows the afferents to
the thalamus, also in red, all serving essentially the same
function as copies of motor instructions. Abbreviations: FO
first order, HO higher order.

Fig. 6 – Ramon y Cajal's (1911) illustration of the thalamic
branches given off by the mamillotegmental tract. The upper
figure (644) is a sagittal section (anterior to right, dorsal up)
that shows the principal mamillary tract (Fmpr) giving off the
mamillothalamic tract (Fthm) anteriorly and continuing
posteriorly as the mamillotegmental tract (Ftm). FM,
habenulo-peduncular tract. The lower figure (645) shows the
detail of the branching.
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An alternative view
(Guillery & Sherman)
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Activity in V1 more than doubles during 
locomotion 

(Neil & Stryker, 2010)
run on a foam ball floated on a stream of air, while its head was
fixed to a crossbar via a small metal headplate implanted with
dental acrylic. A small craniotomy allowed us to insert a silicon
multisite electrode into either primary visual cortex or the
thalamic lateral geniculate nucleus (LGN), which enabled
recording of up to 12 single units simultaneously. We also used
two optical mice to measure the displacement of the ball as
the mouse ran (Dombeck et al., 2007), allowing us to calculate
the physical speed of the ball at a point directly underneath the
mouse. A histogram of typical speeds on the ball is shown in
Figure 1C, demonstrating that the mouse spent a significant
amount of time nearly stationary (which we defined as <1 cm/s),
as well as running at up to !50 cm/s, speeds consistent with
measurement of open-field running (Friedman et al., 1992). The
mouse also occasionally performed grooming behavior, which
was manually marked and removed from subsequent analysis.
Under these conditions, the mouse would readily feed and
manipulate objects placed in its mouth or forepaws. The animal
was allowed to behave freely; in a few cases, the animal spent
all its time either running or stationary, preventing us from
acquiring sufficient data to compare the two states. These cases
were not included in our analysis. Movie S1 shows typical
behavior of the mouse on the ball, including sitting still, running,
and grooming.

Figure 1B shows the typical power spectrum of the local field
potential (LFP) measured in cortex throughout a recording period
as we presented drifting bars at a range of orientations. The
speed of the ball’s movement is shown in green at the bottom.
During periods when the mouse was stationary, there was
a broad band of power at low frequencies, including a peak
between 10–30 Hz, and a narrow peak in the high gamma, which
varied across animals from 50 to 70 Hz. Locomotion was corre-
lated with a decrease in low-frequency power and a dramatic
increase in the amplitude of the high-frequency gamma peak,
as illustrated in Figure 1D, which shows the average power spec-
trum from stationary versus running periods. A scatter plot of
high-frequency gamma power versus speed shows an abrupt
increase once the animal is moving (Figure 1E). A similar, though
smaller, increase in high-frequency power was also observed

in the absence of visual stimuli on the gray mean-luminance
background (Figure S1). During active periods, we could also
observe a narrow peak at the theta frequency (8–9 Hz), which
may be due to volume conduction from the hippocampus
(Sirota et al., 2008) and is consistent with exploratory behavior
(Buzsáki, 2002). These shifts in the LFP suggest a difference
between the cortical states during these two behaviors.

To explore the visual responses of neurons during these two
states, we recorded single-unit activity in layer 2/3 of the visual
cortex in eight animals. We measured visual responses during
trials that consisted of 1.5 s presentations of drifting gratings of
six different spatial frequencies moving in 12 directions at 2 Hz
separated by 0.2 s intervals of blank screen. The screen was
centered at 45" from the midline in front of the contralateral
eye, with receptive fields near the center of the monitor; further-
more, the small amplitude of eye movements that we recorded
(<5", Figure S4) ensures that the mouse did not move its gaze
away from the monitor. Figure 2A shows rasters for a typical
response to three cycles of an optimally oriented grating,
demonstrating the strong periodic response characteristic of
linear (simple) cells. The color coding of individual trials (red,
stationary; blue, moving) reveals that, while the unit was respon-
sive on nearly all trials, it fired more spikes when the mouse was
moving than when stationary. This is further demonstrated in
Figures 2B and 2C, which show the peristimulus time histograms
(PSTH) for stationary and moving periods, respectively.
Figure 2D shows the orientation tuning curve at the optimal
spatial frequency, which demonstrates that the unit has relatively
narrow tuning for the two directions of motion of a single orienta-
tion, !25" half-width at half-maximum, and almost no response
to the orthogonal directions. The increased responsiveness
during moving periods consists of a multiplicative increase in
firing rate across the tuning curve. There is little change in the
low spontaneous rate, shown by the dashed lines.

We classified units as broad- or narrow-spiking according to
their average spike waveform (Figure S2), which has been shown
to correspond roughly to excitatory versus inhibitory cell type
(Barthó et al., 2004; McCormick et al., 1985) and has also been
shown to correspond to different visual response properties in

Figure 1. Experimental Setup and LFP
Dependence on Behavioral State
(A) The mouse’s head is fixed on top of a styrofoam

ball suspended by air. Multisite silicon probes are

used to measure spiking units, while data from

pairs of optical mice are used to calculate the

motion of the ball under the mouse. (B) Local field

potential (LFP) power during the duration of

a single recording, with corresponding speed

trace shown below in green. (C) Distribution of

mouse speed, showing a large fraction of time

spent stationary and a wide distribution of running

speeds. (D) Average power spectrum from

recording shown in (B), during stationary versus

moving periods. (E) Scatter plot of power around

gamma peak (60–70 Hz) versus speed of move-

ment, demonstrating a sharp transition between

stationary and moving states. See also Figure S1

and Movie S1.
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run on a foam ball floated on a stream of air, while its head was
fixed to a crossbar via a small metal headplate implanted with
dental acrylic. A small craniotomy allowed us to insert a silicon
multisite electrode into either primary visual cortex or the
thalamic lateral geniculate nucleus (LGN), which enabled
recording of up to 12 single units simultaneously. We also used
two optical mice to measure the displacement of the ball as
the mouse ran (Dombeck et al., 2007), allowing us to calculate
the physical speed of the ball at a point directly underneath the
mouse. A histogram of typical speeds on the ball is shown in
Figure 1C, demonstrating that the mouse spent a significant
amount of time nearly stationary (which we defined as <1 cm/s),
as well as running at up to !50 cm/s, speeds consistent with
measurement of open-field running (Friedman et al., 1992). The
mouse also occasionally performed grooming behavior, which
was manually marked and removed from subsequent analysis.
Under these conditions, the mouse would readily feed and
manipulate objects placed in its mouth or forepaws. The animal
was allowed to behave freely; in a few cases, the animal spent
all its time either running or stationary, preventing us from
acquiring sufficient data to compare the two states. These cases
were not included in our analysis. Movie S1 shows typical
behavior of the mouse on the ball, including sitting still, running,
and grooming.

Figure 1B shows the typical power spectrum of the local field
potential (LFP) measured in cortex throughout a recording period
as we presented drifting bars at a range of orientations. The
speed of the ball’s movement is shown in green at the bottom.
During periods when the mouse was stationary, there was
a broad band of power at low frequencies, including a peak
between 10–30 Hz, and a narrow peak in the high gamma, which
varied across animals from 50 to 70 Hz. Locomotion was corre-
lated with a decrease in low-frequency power and a dramatic
increase in the amplitude of the high-frequency gamma peak,
as illustrated in Figure 1D, which shows the average power spec-
trum from stationary versus running periods. A scatter plot of
high-frequency gamma power versus speed shows an abrupt
increase once the animal is moving (Figure 1E). A similar, though
smaller, increase in high-frequency power was also observed

in the absence of visual stimuli on the gray mean-luminance
background (Figure S1). During active periods, we could also
observe a narrow peak at the theta frequency (8–9 Hz), which
may be due to volume conduction from the hippocampus
(Sirota et al., 2008) and is consistent with exploratory behavior
(Buzsáki, 2002). These shifts in the LFP suggest a difference
between the cortical states during these two behaviors.

To explore the visual responses of neurons during these two
states, we recorded single-unit activity in layer 2/3 of the visual
cortex in eight animals. We measured visual responses during
trials that consisted of 1.5 s presentations of drifting gratings of
six different spatial frequencies moving in 12 directions at 2 Hz
separated by 0.2 s intervals of blank screen. The screen was
centered at 45" from the midline in front of the contralateral
eye, with receptive fields near the center of the monitor; further-
more, the small amplitude of eye movements that we recorded
(<5", Figure S4) ensures that the mouse did not move its gaze
away from the monitor. Figure 2A shows rasters for a typical
response to three cycles of an optimally oriented grating,
demonstrating the strong periodic response characteristic of
linear (simple) cells. The color coding of individual trials (red,
stationary; blue, moving) reveals that, while the unit was respon-
sive on nearly all trials, it fired more spikes when the mouse was
moving than when stationary. This is further demonstrated in
Figures 2B and 2C, which show the peristimulus time histograms
(PSTH) for stationary and moving periods, respectively.
Figure 2D shows the orientation tuning curve at the optimal
spatial frequency, which demonstrates that the unit has relatively
narrow tuning for the two directions of motion of a single orienta-
tion, !25" half-width at half-maximum, and almost no response
to the orthogonal directions. The increased responsiveness
during moving periods consists of a multiplicative increase in
firing rate across the tuning curve. There is little change in the
low spontaneous rate, shown by the dashed lines.

We classified units as broad- or narrow-spiking according to
their average spike waveform (Figure S2), which has been shown
to correspond roughly to excitatory versus inhibitory cell type
(Barthó et al., 2004; McCormick et al., 1985) and has also been
shown to correspond to different visual response properties in

Figure 1. Experimental Setup and LFP
Dependence on Behavioral State
(A) The mouse’s head is fixed on top of a styrofoam

ball suspended by air. Multisite silicon probes are

used to measure spiking units, while data from

pairs of optical mice are used to calculate the

motion of the ball under the mouse. (B) Local field

potential (LFP) power during the duration of

a single recording, with corresponding speed

trace shown below in green. (C) Distribution of

mouse speed, showing a large fraction of time

spent stationary and a wide distribution of running

speeds. (D) Average power spectrum from

recording shown in (B), during stationary versus

moving periods. (E) Scatter plot of power around

gamma peak (60–70 Hz) versus speed of move-

ment, demonstrating a sharp transition between

stationary and moving states. See also Figure S1

and Movie S1.
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Mystery



(Wayne Maddison)

Vision in jumping spiders

(Bair & Olshausen, 1991)



Jumping spiders do object recognition



Spider mimicry in flies

spider

fly



Prey capture

• attention
• orienting
• tracking

Turning in jumping spiders 123

was rare, easily recognizable, and confined to stimuli in front of the animal. Because

of the ease with which turning mediated by the principal eye and by the lateral eye

could be distinguished, the principal eyes were not routinely covered.

Target

Fig. 3. Diagram of a turn made by a jumping spider in the 'real world' (a) and in the experi-

mental situation (6). In the latter the animal's prosoma is fixed in space, but the substrate, a

card ring, is movable. The spider, ring and drum are not drawn to scale; i is the stimulus angle,

i.e. the angle between a line joining the target to a point between the postero-lateral eyes and

the spider's longitudinal axis; t is the angle turned by the spider, or the ring.

RESULTS

Turns made by unrestrained animals

Anyone who has watched jumping spiders can confirm that they turn to face moving

objects in one of two ways. They either make a single complete turn which results in

the spider's axis pointing straight towards the source of the movement (fixation), or

they will make one or more much smaller turns of 10-20° which may or may not result

in fixation. Sometimes one sees a combination of the two, with a small turn followed

by a much larger one. If the spider makes a turn which does not result in its axis

coming to within about 30° of the target, nothing more happens, unless the target

moves again, in which case another turn may be made. If the turn does result in

fixation many things may happen: the spider may creep towards it, turn and run

away, or begin a sexual display if the target turns out to be another jumping spider.

126 M. F. LAND

angle (i.e. they lie along a line passing through the origin with a slope of i) and that

the remaining 15 turns are all of less than 300 (see also Fig. 76), and their magnitudes

do not seem to be related to the stimulus angle. Fig. 6 shows the results of a much

more extensive experiment on a single spider, in which turns to the left and right of
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Fig. 5- Plot of the angle the spider turns the ring against the stimulus angle (see Fig. 3). The
stimulus angle is taken as the position of the leading edge of the black square at the midpoint
of each movement. Closed circles are plotted from the record shown in Fig. 4. Open circles
from the companion run to this with the target moving in the opposite direction (left to right).

the animal have been pooled. The histogram shows essentially the same features as

Fig. 5, and confirms that for stimulus angles of 6o° or greater there are two quite

distinct kinds of turns (the histograms of numbers of turns versus angle turned become

bimodal). In over a hundred repetitions of this experiment this result was confirmed:

turns are either close in magnitude to the stimulus angle or they are small.

These two kinds of turns will be referred to in future discussion as complete and

partial turns respectively. For convenience, a complete turn will be denned as one

whose amplitude is greater than half the stimulus angle, and a partial turn less than

half. Where the stimulus angle is less than 6o° it does not seem possible to draw this

distinction, since the histograms of number of turns versus angle turned are unimodal

(Fig. 6).

Notice that complete turns are those which, in the 'real world', would have brought

the spider's body axis to within a few degrees of the target, and thus resulted in

fixation. Partial turns, while always in the direction of the target, would not result in

Land (1971)



One-day old jumping spider
(filmed in the Bower lab, Caltech 1991)



One-day old jumping spider
(filmed in the Bower lab, Caltech 1991)



back of the lure and dangled it on the end of a
human hair from the bend in the rod immediately
above the dish. We positioned the lure 10 mm
above the dish bottom and jiggled it by passing a

current through a hidden magnetic coil every 5 s
until the test spider oriented towards it.

Positioning the lure 10 mm above the dish
meant that the test spider could see the lure from

Figure 1 a-c.

Animal Behaviour, 53, 2260

Navigation
(Tarsitano & Jackson 1997)



…problem solving behavior, language, expert knowledge and 
application, and reason, are all pretty simple once the 
essence of being and reacting are available.  That essence is 
the ability to move around in a dynamic environment, sensing 
the surroundings to a degree sufficient to achieve the 
necessary maintenance of life and reproduction.  This part of 
intelligence is where evolution has concentrated its time--it is 
much harder.

— Rodney Brooks, “Intelligence without representation,” 
Artificial Intelligence (1991)



 ...in the 1960s almost no one realized that machine vision was 
difficult.  

… the idea that extracting edges and lines from images might be at 
all difficult simply did not occur to those who had not tried to do it. 
It turned out to be an elusive problem. 

— David Marr (1982)



20 years of learning about vision: Questions answered, 
questions unanswered, and questions not yet asked.   
In: 20 Years of Computational Neuroscience.  J.M. Bower, 
Ed. (Symposium of the CNS2010 annual meeting)

http://redwood.berkeley.edu/bruno
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