
The Flow of Information

RTDM Bootcamp on Power Systems: Lecture 2

January 22–26, 2018

Sean Meyn

Department of Electrical and Computer Engineering — University of Florida

Based in part on joint research with

Dr. Y. Chen UF/NREL, J. Mathias, P. Barooah, UF & A. Bušić, Inria
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Background

My own: stochastic processes and control ...

15 years ago: with economist In-Koo Cho
Can we understand the California power crisis?

2003: Dynamics of ancillary service prices in power distribution systems

“... earlier book with Tweedie is the bible for economists ...”
–Thomas Sargent, NYU, as president of AEA

Today, among other things,
focus on distributed control with Barooah & Bušić and our students

Stay tuned for Zap Q-Learning in March!
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Stay tuned for Zap Q-Learning in March!



Background

My own: stochastic processes and control ...

15 years ago: with economist In-Koo Cho
Can we understand the California power crisis?

2003: Dynamics of ancillary service prices in power distribution systems

“... earlier book with Tweedie is the bible for economists ...”
–Thomas Sargent, NYU, as president of AEA

Today, among other things,
focus on distributed control with Barooah & Bušić and our students
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Information Signals View of the Balancing Authority

View of the Balancing Authority

 

Home > About Us > Our Business > The ISO grid

The ISO grid
The ISO manages the flow of electricity for about 80 percent of California and a small
part of Nevada, which encompasses all of the investor-owned utility territories and some
municipal utility service areas. There are some pockets where local public power
companies manage their own transmission systems.
 

The ISO is the largest of about 38 balancing authorities in the western interconnection, handling an
estimated 35 percent of the electric load in the West. A balancing authority is responsible for operating
a transmission control area. It matches generation with load and maintains consistent electric frequency
of the grid, even during extreme weather conditions or natural disasters.  

BPA
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Balancing frequency and tie-line error

Frequency deviation of 0.1 Hz =⇒ Panic!

NERC report 2002
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Rockport Incident - 23 April 2002

Initial Trigger 14:50:20 EST, 13:50:20 CST
Frequency Change 95 mHz
Generation Loss 2600 MW

Frequency recorded at Rochester, N.Y.

L/O 765 kV transmission Rockport — Jefferson along with
Rockport Bus 1 was followed by L/O Rockport Units 1 and 2 and
765 kV transmission Rockport — Sullivan

Breaker failure =⇒ transients =⇒ two generators tripped
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Balancing frequency and tie-line error

Frequency is continuous across interconnected regions

http://fnetpublic.utk.edu/
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Balancing frequency and tie-line error

Phase angle is also continuous

http://fnetpublic.utk.edu/
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Balancing frequency and tie-line error

Frequency floats more freely in other regions of the globe

www.ee.iitb.ac.in/~anil/
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 Relay problem near the Taj Mahal
en.wikipedia.org/wiki/2012_India_blackouts

A disturbance in Agra appears to spread instantly to Mumbai and Calcutta.
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Ducks, Peaks, Ramps, Voltage, Power, Energy ...

Afternoon peaks in New York

Pricing Data Power Grid Data Load Data Reports & Info Postings by
Date

Maps Charts &
Graphs

Market Access
Login

Auto Refresh: On 
 Updated: 16:23

Select Zone(s):

Select Data Type(s):

Display Actual

Display Forecast

Display Day-Ahead Bids

Select Date Preferences:

 View Yesterday's Data

 View Tomorrow's Data

Notes: 
-Actual Load includes losses 
-Forecast Load does not include losses

Zone G - Hudson Valley
Zone H - Millwood
Zone I - Dunwoodie
Zone J - New York City
Zone K - Long Island
NYS Total Load
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1/22/2018 - Zonal Load
Click and drag in the plot area to zoom in

22. Jan 12:00 23. Jan 12:00

01/22/2018 01/23/2018
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Load Load vs. LBMP Flow Daily Fuel Current Fuel

Data Graphs and Fuel Mix Chart

Market Data

Market & Operational Data

Pricing Data

Power Grid Data

Load Data

Reports & Information

Postings by Date

Zone Maps

Charts & Graphs

Market Access Login

Custom Reports

TCC

ICAP

Distributed Energy Resource (DER)

Ancillary Services

Interregional Data

System Conditions

Documents

Tariffs

Manuals & Guides

Technical Bulletins

Legal & Regulatory

About NYISO

http://www.nyiso.com/public/markets_operations/market_data/graphs/index.jsp
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Ducks, Peaks, Ramps, Voltage, Power, Energy ...

Dreaded Duck Curve in the South West

 
Home > Todays Outlook

ABOUT US PARTICIPATE STAY INFORMED PLANNING MARKET & OPERATIONS RULES ISO EN ESPAÑOL

Current and forecasted demand AS OF 16:40
35,311 MW

Available capacity
25,953 MW
Current demand

Today’s demand Yesterday Data Options 

M
W

Forecasted peak: 29,549Forecasted peak: 29,549

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
17,000

22,000

27,000

32,000

Net demand (demand minus solar and wind) AS OF 16:40

This graph illustrates how the ISO meets demand while managing the quickly changing ramp rates of variable energy resources, such as solar and
wind. Learn how the ISO maintains reliability while maximizing clean energy sources.

Today

Day ahead forecast Hour ahead forecast Current demand
(5 min. avg.)

http://www.caiso.com/Pages/Today's-Outlook-Details.aspx
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Ducks, Peaks, Ramps, Voltage, Power, Energy ...

Dreaded Duck Curve in the South West

March 8th 2014:   Impact of wind 
and solar on net-load at CAISO

Ramp limitations cause price-spikes

Price spike due to high net-load ramping
need when solar production ramped out

Negative prices due to high
mid-day solar production
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Ducks, Peaks, Ramps, Voltage, Power, Energy ...

Wind in the North West
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Ducks, Peaks, Ramps, Voltage, Power, Energy ...

Wind and Sun in Germany

Institute  of 
Electrical Power Systems

Prof. I. Erlich
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Engineering & Markets : Midcontinent ISO on a typical fall morning

https://www.misoenergy.org/LMPContourMap/MISO_All.html
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Engineering & Markets : CAISO yesterday noon
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Engineering & Markets : ERCOT yesterday afternoon

LMP Contour Map: Real-Time Market - Locational Marginal Pricing Help?

Last Updated: Jan 24, 2018 14:20 Download KML:  Contours and Points  /  Points Only  /  TX Counties  /  ERCOT Region

Select Data     View As 

< $9,000.00

< $-250.00

Normal Gradient
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Engineering & Markets : ERCOT yesterday afternoon

LMP Contour Map: Real-Time Market - Locational Marginal Pricing Help?

Last Updated: Jan 24, 2018 14:20 Download KML:  Contours and Points  /  Points Only  /  TX Counties  /  ERCOT Region

Select Data     View As 

< $23.38

< $-22.60

High Gradient
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Information Signals View of the Balancing Authority

View of the Balancing Authority
Engineering & Markets : ERCOT scarcity pricing
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Information Signals View of the Generator

Why is the BA so picky about ω?
Why should the generators care?

1,200MW plant in Florida

U.S. CC Gas-turbine generators: most efficient and expensive

Powerful, but dainty!

Generator designed to “trip” if ω is slightly out of bounds

Punished with droop, AGC, ramping services, weeks with steady wind ...
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Information Signals View of the Consumer

Audience: What do you want with power?

Take the Quality of Life (QoL) Test:
How Did You Feel When a Stranger...

Flexible loads are not dispensable loads: power can be shifted thanks to

thermal inertia

time-constants of algae

Each is a form of storage
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Information Signals View of the Consumer

Audience: What do you want with power?

Take the Quality of Life (QoL) Test:
How Did You Feel When a Stranger...

Response of a typical rational agent

Flexible loads are not dispensable loads: power can be shifted thanks to

thermal inertia

time-constants of algae

Each is a form of storage
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Information Signals View of the Consumer

Audience: What do you want with power?

Take the Quality of Life (QoL) Test:
How Did You Feel When a Stranger...

Not so upsetting

Flexible loads are not dispensable loads: power can be shifted thanks to

thermal inertia

time-constants of algae

Each is a form of storage
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Data Source:  EPRI (2009), Figure 4-10, p.4-11

Pm

ρv

Governor
Control

Steam
Turbine

Distributed Control Today

http://www.intechopen.com/books/wind-farm-impact-in-power-system-and-alternatives-to-improve-the-integration/operation-and-control-of-wind-farms-in-non-interconnected-power-systems


Distributed Control Today

Comparison: Flight control
Distributed Control

Local control loops located at elevators, flaps, ailerons

Resulting input-output behavior is nearly linear, and highly predictable

=⇒ Simplifies global control

12 / 56



Distributed Control Today

Comparison: Flight control
Distributed Control

Local control loops located at elevators, flaps, ailerons

Resulting input-output behavior is nearly linear, and highly predictable

=⇒ Simplifies global control

12 / 56



Distributed Control Today

Comparison: Flight control
Distributed Control

Local control loops located at elevators, flaps, ailerons

Resulting input-output behavior is nearly linear, and highly predictable

=⇒ Simplifies global control

12 / 56



Distributed Control Today

Comparison: Flight control
Distributed Control

Balancing Authority Ancillary Services Grid

Measurements:
 Voltage
 Frequency
 Phase

Σ

−

Brains

Brawn

What Good Are These?
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Distributed Control Today

Grid Control Architecture
Crash course on Droop and AGC

Don’t forget: Yesterday’s tutorial by R. Murray, Caltech
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https://simons.berkeley.edu/talks/murray-control-1


Distributed Control Today

Grid Control Architecture
Crash course on Droop and AGC

Don’t forget:

Frequency is continuous across interconnected regions
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Distributed Control Today

Grid Control Architecture
Crash course on Droop and AGC

Distributed Control Description in Three Steps:

Turbine
Governor

Valves or 
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Turbine
Controller

Adapted from ETH Dynamics 2012
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Each generator measures system frequency
Primary control loop: adjusts valve position in response to deviation
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PI control architecture
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Distributed Control
Architecture Today
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Distributed Control Today

Grid Control Architecture
Crash course on Droop and AGC

The Grid
Loads
Transmission lines 
Other generators 

Balancing Authority

Automatic 
Generation

Control (AGC) Tie-Line, ω  

Distributed Control
Architecture Today

ω

Errors:

All the
Generators

Questions:

Why this architecture?

How to model the aggregate
input-output system:

AGC(t) −→ ω(t)

Answer is similar to the airplane:
local control shapes aggregate dynamics so Grid is more easily controlled
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Distributed Control Today

Grid Control Architecture
Crash course on Droop and AGC

Answer is similar to the airplane: local control shapes the aggregate so it
is more easily controlled.

Example from [4, 22, 15] (general theory in [5]):
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Bode Diagram: Transfer Function AGC to System Frequency
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Distributed Control Today

Grid Control Architecture
Crash course on Droop and AGC
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Distributed Control Today

Grid Control Architecture
Crash course on Droop and AGC

Answer is similar to the airplane: local control shapes the aggregate so it
is more easily controlled.
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Frequency response AGC(t) −→ ω(t) is flat in region of interest
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Distributed Control Today

Secondary Control
Balancing Authority has a simple job

Control theorists in the audience:
what should the BA do?
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Pure integral control is appropriate: set bandwidth near 10−1 rad/sec.
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Distributed Control Today

Secondary Control
Balancing Authority: Examples of AGC

AGC at PJM:

RegA RegD
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Distributed Control Today

Secondary Control
Balancing Authority: Examples of AGC

Balancing Reserves at BPA:
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Distributed Control Today

Secondary Control
Balancing Authority: Is their job simple?

Example of service from coal-fire power plants:
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Fig. 10. Coal-�red generators do not follow regulation signals precisely....
 Some do better than others

Data from [6]. Not a risk to stability, but costly [15]
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Distributed Control Today

Secondary Control
Balancing Authority: Is their job simple?

Where do they find Ancillary Services to provide needed actuation?

Many generalized storage solutions. If we are stuck with generators, then
gas-combustion or hydro generation are best in terms of responsiveness.

Also,

compressed air, flywheels, molten salt, trains pulled up a hill, ...
https://en.wikipedia.org/wiki/Grid_energy_storage

California believes the answer is massive batteries
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Virtual Energy Storage Real Energy Storage

Batteries
Preferred in the Golden State

They are absolutely awesome, except costly and

Like pumped hydro, energy wasted with charge and discharge

Lots of real-estate required, and lots of raw materials
(China has its eyes on Chile)

Eccentric charge/discharge rates:
Lithium-IonNickel–metal hydride PJM RegD

Lithium-Ion:   30 minute charge

2 Min
Discharge

2 Min
Charge

Charge

Discharge

500 W

-500 W

Time

Question: How can a fleet of batteries provide high-frequency ancillary
service, such as PJM RegD?
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Virtual Energy Storage History

Demand Dispatch & Virtual Energy Storage
Some History

Schweppe’s FAPER Concept

Industry now recognizes the value of randomization for distributed control
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Some History

Mathematical foundations: Malhamé et. al. in 80s [Mean-Field Model]

Randomized control:
Callaway, Hiskens, Mathieu, Kizilkale, Malhamé, Strbac, Almassalkhi, Hines

Often system inversion to obtain linear MFM

Dozen papers by Meyn & Bušić since 2012 (see references)

Industry now recognizes the value of randomization for distributed control
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Virtual Energy Storage History

Demand Dispatch & Virtual Energy Storage
Some History

Industry now recognizes the value of randomization for distributed control

Publication number US8328110 B2
Publication type Grant
Application number US 12/499,347
Publication date 11 Dec 2012
Filing date 8 Jul 2009
Priority date 8 Jul 2009
Fee status Paid

Also published as US20110006123

Inventors Jeffrey O. Sharp

Original Assignee Schneider Electric USA, Inc.

Export Citation BiBTeX, EndNote, RefMan

Patent Citations (5), Classifications (8), Legal Events (3)

External Links: USPTO, USPTO Assignment, Espacenet

Electrical load disconnect device with
electronic control 
US 8328110 B2
ABSTRACT

Electrical load spreading arrangements reduce peak power demand. An
enclosure houses an electronic circuit board, which receives at a first input
terminal a first thermostat control signal from a thermostat intended to control a
first air conditioning unit and at a second input terminal a second thermostat
control signal from a thermostat intended to control a second AC unit. A
controller on the circuit board is programmed with instructions stored in a
memory coupled to the controller causing the controller to monitor the first and
second input terminals to determine the timing and duration of the thermostat
control signals passed to the output terminals for activating or deactivating the
AC units such that overlapping operation of the AC units is reduced particularly during peak demand periods. A similar arrangement may be applied to a broader
class of HVAC equipment, including water heaters, for example.

     

IMAGES (5)
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Virtual Energy Storage History

Demand Dispatch & Virtual Energy Storage

Potential

Big Business

For more than thirty years:

On Calla: Utility controls water heaters, residential pool pumps and
other loads.

EDF Sheds nuclear power load at night
– electricity goes to heating Parisian water heaters

aFlorida Power and Light, Florida’s largest utility.
www.fpl.com/residential/energysaving/programs/oncall.shtml
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Potential

Big Business

For more than thirty years:

On Calla: Utility controls water heaters, residential pool pumps and
other loads.

EDF Sheds nuclear power load at night
– electricity goes to heating Parisian water heaters

Similar programs with long history in New Zealand & UK

aFlorida Power and Light, Florida’s largest utility.
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Virtual Energy Storage History

Demand Dispatch & Virtual Energy Storage
Potential Big Business

More recently:
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Virtual Energy Storage Capacity

Capacity of Virtual Energy Storage
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Virtual Energy Storage Capacity

Buildings as Batteries
HVAC flexibility to provide additional ancillary service

◦ Buildings consume 70% of electricity in the US

◦ Buildings have large thermal capacity

◦ Modern buildings have fast-responding equipment:
VFDs (variable frequency drive)
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Virtual Energy Storage Capacity

Buildings as Batteries
Tracking RegD at Pugh Hall

In one sentence: Ramp up and down power consumption, just 10%, to
track regulation signal.
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How demand response from commercial buildings will provide the regulation ..., Allerton, 2012
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Virtual Energy Storage Capacity

Pugh Hall @ UF
How much?

−4

−2

0

2

4

−10

0

10

0 500 1000 1500 2000 2500 3000 3500
−0.2

0

0.2

Time (s)

Fan Power Deviation (kW )
Regulation Signal (kW )

Input (%)

Temperature Deviation (◦C)

. One AHU fan with 25 kW motor:
> 3 kW of regulation reserve

. Pugh Hall (40k sq ft, 3 AHUs):
> 10 kW

Indoor air quality is not affected

. 100 buildings:
> 1 MW

just using 10% of the fans
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Virtual Energy Storage Capacity

Capacity
120,000 residential water heaters Residential Water Heater:   Consumer Wants Hot Water
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Temperature Power G(t) 
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Question: What is the capacity in terms of

Virtual energy storage (MWh)
Virtual power (MW)

Energy Capacity

Suppose system is fully charged at time t = 0.
T = time to discharge: All units off for 0 ≤ t ≤ T

Answer: E = T × Pavg

t
t = 0 t = T

Water Temperature of Each Water Heater
oF

110

115

117 No power consumption

∼ agrees with H. Hao et. al., Aggregate flexibility of thermostatically controlled loads, 2015 [7]
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Virtual Energy Storage Capacity

Capacity
120,000 residential water heaters

Capacity

P+ = Pavg = 30 MW

P− = Ppeak − Pavg

E = T × Pavg

Typical: T = 4 hours

≈ 30 MW, 120 MWh
battery system
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How do we compare?
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Virtual Energy Storage Capacity

Capacity
120,000 residential water heaters

Capacity

P+ = Pavg = 30 MW

P− = Ppeak − Pavg

E = T × Pavg

Typical: T = 4 hours

≈ 30 MW, 120 MWh
battery system

30 MW, 120 MWh battery system!

The Escondido system consists of 24 containers hiding nearly

20,000 modules that hold 20 batteries each ... 10% round-trip

energy loss, cooling required, ...

World’s largest in Feb 2017; update in Dec: Tesla system in

Australia is now the lead at 129 MWh
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Virtual Energy Storage Capacity

Capacity
120,000 residential water heaters

Capacity

P+ = Pavg = 30 MW

P− = Ppeak − Pavg

E = T × Pavg

Typical: T = 4 hours

≈ 30 MW, 120 MWh
battery system

30 MW, 120 MWh battery system!

The Escondido system consists of 24 containers hiding nearly

20,000 modules that hold 20 batteries each ... 10% round-trip

energy loss, cooling required, ...

The population of California is 40 million,
and the electricity doesn’t just go into the hot tubs

34 / 56



Virtual Energy Storage Capacity

Capacity
120,000 residential water heaters

Capacity

P+ = Pavg = 30 MW

P− = Ppeak − Pavg

E = T × Pavg

Typical: T = 4 hours

≈ 30 MW, 120 MWh
battery system

30 MW, 120 MWh battery system!

The Escondido system consists of 24 containers hiding nearly

20,000 modules that hold 20 batteries each ... 10% round-trip

energy loss, cooling required, ...

Conjecture: It would be far cheaper to give a free water heater (with
interface/comm. hardware) to each of 105 households in San Diego
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Virtual Energy Storage Achieving Capacity

Tracking with 100,000 Water Heaters
Power Limits – Regulation
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Tracking results with 100,000 water heaters, and the behavior of a single
water heater in three cases, distinguished by the reference signal [1].

Theoretical power capacity is approx 8 MW (with no flow)
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Virtual Energy Storage Achieving Capacity

Tracking with 100,000 Water Heaters
Energy Limits – Ramps and Contingencies
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 Tracking a sawtooth  wave with 100,000 water heaters: 

Average power consumption = 8MW

Quality of Service = temperature limits

By design, QoS violation is not possible

Distributed Control Design for Balancing the Grid Using Flexible Loads, Springer 2018
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Virtual Energy Storage Achieving Capacity

Tracking with 10,000 Swimming Pools
Regulation and Contingencies

ReferencePower Deviation
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om

 BA
Simulation using 10,000 swimming pools

that consume on average 5MW

Range of services provided by
the one million residential
pools in California:
contingency reserves and
balancing can be supplied
simultaneously [3, 1].

From Yue Chen’s thesis [3] YC moves to NREL this week!
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Virtual Energy Storage Achieving Capacity

DER Flexibility Assessment & Valuation
Ongoing GMLC project – PNNL/ORNL/UF

Virtual Battery-Based Characterization
and Control of Flexible Building Loads
Using VOLTTRON

Value in Siskiyou vs San Diego
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Virtual Energy Storage Intelligence at the Load

Control Architecture
Intelligence at the Load distinguishes our work from others

No time for details – wait until next Wednesday!

Step 1: Load-level Feedback Loops
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Basic Ingredients: 1.  Randomized decision rule design.  
 Maps (X, ζ) to a probability of on/o�
2.  Secondary control monitors QoS,
 on slower time-scale
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 on slower time-scale
3. Newest innovation: additional �ltering of ζ
 to invert mean-�eld dynamics 
 in a speci�c frequency range
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Virtual Energy Storage Intelligence at the Load

Control Architecture
Intelligence at the Load

Step 2: Condition Grid Reference Signal
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Virtual Energy Storage Intelligence at the Load

Control Architecture
Aggregate input-output dynamics

No time for details – wait until next Wednesday!
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Conclusions Stability

Question of Time Scales

Question: Can a smart fridge provide synthetic droop?

There is hope: They did a good job in the past!

Other local services may also be feasible and valuable
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Publication type Grant
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ABSTRACT

Electrical load spreading arrangements reduce peak power demand. An
enclosure houses an electronic circuit board, which receives at a first input
terminal a first thermostat control signal from a thermostat intended to control a
first air conditioning unit and at a second input terminal a second thermostat
control signal from a thermostat intended to control a second AC unit. A
controller on the circuit board is programmed with instructions stored in a
memory coupled to the controller causing the controller to monitor the first and
second input terminals to determine the timing and duration of the thermostat
control signals passed to the output terminals for activating or deactivating the
AC units such that overlapping operation of the AC units is reduced particularly during peak demand periods. A similar arrangement may be applied to a broader
class of HVAC equipment, including water heaters, for example.
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spinning machines with power electronics

Synthetic intertia – just to send a control signal?

Voltage?

Alternate approaches to consensus? [25, 24]
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Conclusions Situational Awareness

Question: Estimation

Estimating the state for the MFM is not realistic in general [19]

Estimating the baseline is a philosophical question

How do we define and estimate the State of Charge?
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Conclusions Impact on Consumers

Question: Impact on Consumers

What is the cost to consumers?
Any additional cycling or energy cost?

A better science for enforcing QoS/cost constraints

... More on this next week
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Conclusions Value of Performance

Question: Value of Performance
Do we need such accurate tracking?
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Fig. 10. Coal-�red generators do not follow regulation signals precisely....
 Some do better than others

Regulation service from generators is not perfect
Frequency Regulation Basics and Trends — Brendan J. Kirby, December 2004

∗despite hurricanes
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The grid today is reliable∗, despite the poor services offered by generators
Questions remain:

What is the cost of poor tracking?

How do we deal with dynamics/uncertainty in capacity of virtual
storage from loads?

∗despite hurricanes
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Conclusions Smart Fridge / Dumb Grid?

Question: Control Architecture
Smart Fridge / Dumb Grid?

Local intelligence at each load =⇒ ensemble looks like a giant battery.

Does one-way communication suffice?
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Conclusions Markets

Questions: Markets
Rationality =⇒ risk-aware

Since Schweppe, there has been a passion for competitive equilibrium
analysis, with power treated as the commodity of interest.
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Trouble with current thinking:

Long-term risk. The marginal-cost framework does not provide
adequate incentives for investment – this was recognized by EDF
many decades ago.
This was also recognized by Schweppe in the 80s [2].
Short term risk faced by grid operator:

Will services be available when needed?
Quality sufficient?

What do consumers want? Risk comes in many flavors:
Is my power available?
Is my bill predictable?
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Conclusions Markets

Questions: Markets
What do consumers want?

Rational agent in Berkeley wants a hot shower... (maybe with a nudge)

http://www.onsetcomp.com/learning/application_stories/multi-channel-data-loggers-improve-forensic-analysis-complex-domestic-hot-water-complaints

Θ(t)

G(t)

Ambient
Temperature

Inlet Water
Temperature

Typical water heater trajectories

Θ(t): Temperature
G(t): Power consumption

Not-so rational agent: max
G

∫ T

0

(
U(G(t))− p(t)G(t)

)
dt

Big question: Science for long-term contracts that ensures

Long-term incentives
Appropriate risk allocation on every time-scale
Requires cost/value calculations for virtual energy storage
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Conclusions Thank You

Thank You
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[23] J. Mathias, A. Bušić, and S. Meyn. Demand Dispatch with Heterogeneous Intelligent
Loads. In Proc. of the 50th Hawaii International Conference on System Sciences (HICSS),
2017

[24] J. Brooks and P. Barooah. Consumer-aware load control to provide contingency reserves
using frequency measurements and inter-load communication. In American Control
Conference, pages 5008–5013, July 2016.

[25] C. Zhao, U. Topcu, N. Li, and S. Low. Design and stability of load-side primary frequency
control in power systems. IEEE Trans. Automat. Control, 59(5):1177–1189, May 2014.

56 / 56


	Information Signals
	View of the Balancing Authority
	View of the Generator
	View of the Consumer

	Distributed Control Today
	Virtual Energy Storage
	Real Energy Storage
	History
	Capacity
	Achieving Capacity
	Intelligence at the Load

	Conclusions
	Stability
	Situational Awareness
	Impact on Consumers
	Value of Performance
	Smart Fridge / Dumb Grid?
	Markets
	Thank You

	References

