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ridesharing platforms

critical components of modern urban transit
crucible for Real-Time Decision Making/Ops Management/EconCS
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ridesharing: overview

credit: lyft.com
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ridesharing: pricing

credit: lyft.com
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rideshare platforms: pricing
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rtdm in ridesharing: mapping

credit: lyft data science team
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rtdm in ridesharing: logistics

credit: lyft data science team
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rtdm in ridesharing: market design

credit: lyft data science team
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the bigger picture: on-demand transportation

– fast operational timescales; complex network externalities
– new control-levers: dynamic pricing/dispatch, incentives, pooling
– new(er) challenges: competition, effect on public transit, urban planning

this talk
‘where do we come from?’

I simple framework for ridesharing: data, state, controls
‘where are we?’

I approximate optimal control for ridesharing logistics
I market mechanisms as a tool for algorithmic self-calibration

‘where are we going?’
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main challenge: rebalancing

demand heterogeneity ⇒ non-uniform supply across space and time

logistical ‘solution’: rebalance the vehicle fleet
economic ‘solution’: incentives for passengers and drivers
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(stochastic-network) model for ridesharing

m units (cars) across n stations (here, we have m = 6, n = 4)
system state ∈ Sn,m = {(xi )i∈[n]|

∑n
i=1 xi = m}

i → j passengers arrive via Poisson process with rate φij
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(stochastic-network) model for ridesharing

platform sets state-dependent prices pij(X)

quantile qij(X) = 1− Fij(pij(X)): fraction willing to pay pij(X)
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(stochastic-network) model for ridesharing

car travels with passenger to destination
(this talk: assume travel-times are zero)
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(stochastic-network) model for ridesharing

myopic customers: abandon system if
– vehicle unavailable
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(stochastic-network) model for ridesharing

myopic customers: abandon system if
– vehicle unavailable or
– price too high
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(stochastic-network) model for ridesharing

objective:
– optimize chosen long-run average system objective
– objectives: revenue, welfare, customer engagement, etc.
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control levers for ridesharing

pricing
– modulates demand between locations
– dynamic, state-dependent

Sid Banerjee (Cornell ORIE) ridesharing January 23, 2018 12 / 39



control levers for ridesharing

dispatch: choose ‘nearby’ car to serve demand
– can use any car within ‘ETA target’
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control levers for ridesharing

rebalancing: re-direct free car to empty location
– incur a cost for moving the car
– driver ‘nudges’ (heat-maps), autonomous vehicles
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intermezzo: why model?

scales and economics
– need controls that work in real-time, at large-scales
– complex controls need more resources; non-commensurate (?) impact
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– errors in estimation and forecasting
– difficulties in learning demand/supply curves
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intermezzo: why this model?

assumption 1: timescales of platform operations
number of cars, arrival rates, demand elasticities remain constant over time
– time-varying rates (re-solve policies at change-points. . .)
– driver entry/exit behavior
– effect of bursty arrivals?

assumption 2: timescales of strategic interactions
– passengers abandon if price too high/no vehicle
– drivers react at longer timescales

assumption 3: availability of data
platform has perfect knowledge of arrival rates, demand elasticities
– is that really true?
– is that really needed?
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data-driven optimization for vehicle-sharing

Pricing and Optimization in Shared Vehicle Systems
Banerjee, Freund & Lykouris (2016)
https://arxiv.org/abs/1608.06819
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model recap

– m units spread across n nodes
– control: state-dependent pricing policy ~p = {pij(x)} (or quantiles ~q)
– flows of cars in network: realized via Markov chain dynamics
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technical challenges

objective

max
q={qe(x)}

∑
x
π~q(x)︸ ︷︷ ︸

long-run avg under control q

( ∑
e=(i ,j)

E[reward rate from i → j rides]

)
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technical challenges

objective

max
q={qe(x)}

∑
x
π~q(x)

( ∑
e=(i ,j)

1[xi>0] ·︸ ︷︷ ︸
availability at i

φeqe(x) · Ie(qe(x))︸ ︷︷ ︸
E[reward for i → j ride]

)

assumption: qIij(q) is concave
true for throughput; welfare; revenue under regular Fij
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technical challenges

objective

max
q∈[0,1]|E |

Eπq(X)

[∑
e

φeqe(X)Ie(q(X))

]

assumption: qIij(q) is concave

challenges
exponential size of policy

non-convex problem: even with state-independent qij
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approximately optimal control policies

objective

max
q∈[0,1]|E |

Eπq(X)

∑
i ,j

φijq(X)Iij(q(X))


challenges

exponential number of states
non-convex optimization problem

theorem [Banerjee, Freund & Lykouris 2016]
convex relaxation gives state-independent pricing policy with approximation
factor of 1 + number of stations

number of cars

extends to dispatch, rebalancing
large-supply/large-market optimality: factor goes to 1 as system scales
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proof roadmap

relaxation + resource augmentation
step 1: elevated flow relaxation: convex program that upper bounds
performance, encodes essential conservation laws

step 2: show EFR is tight for a class of state-independent pricing policies,
in the ‘infinite-unit system’ (i.e., m→∞)
step 3: bound objective in finite-unit system against infinite-unit system for
this simpler class of policies
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the elevated flow relaxation

objective

max
q∈[0,1]|E |

Eπq(X)

∑
i ,j

φijq(X)Iij(q(X))


Suppose we knew q?: Let q̂? = Eπq? (X)[q?(X)]

Eπq? (X)

∑
i ,j

φijq
?(X)Iij(q

?(X))

 ≤∑
i ,j

φij q̂
?Iij(q̂

?) (Jensen’s Ineq.)

≤ max
q∈[0,1]|E |

∑
i ,j

φijqij Iij(qij)

this is convex! however, it is too weak

idea: strengthen relaxation by adding additional constraints on q
• circulation:

∑
j φijqij =

∑
k φkiqki ∀ i ∈ V

• Little’s law: E[units in transit] ≤ m
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in summary

theorem [Banerjee, Freund & Lykouris 2016]
state-independent prices ~p∞ (from EFR) in m-unit system gives

OBJm(~p∞) ≥ αmnOPTm , where αmn = m
m+n−1

main takeaway
new technique for optimizing stochastic dynamical system in steady-state

can extend to more complex settings (?)
(travel-times, multi-objective, pooling, reservations)
but where do we get the demand-rate and price-elasticity estimates?
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market design in ride-share platforms

Pricing in Ride-Share Platforms
Banerjee, Johari & Riquelme (2015)
(EC’15: https://ssrn.com/abstract=2568258)
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why market design? and why ridesharing?

Over the next 10 years, the major breakthrough of economics will
be in applications of market design, which improves the efficiency
of markets using a combination of game theory, economics and
algorithm design. We’ve already seen fruitful application in search
and spectrum auctions, kidney exchange and school assignment.
(2016 will be the year that) Silicon Valley recognizes that the
value of Uber is its marketplace, not the data...

R. Preston McAfee

data-driven optimization vs. market design

default approach for complex operational problems:
model – calibrate from data – optimize specific problem instance
market mechanisms self-calibrate to solve the optimization problem
ridesharing unique among online marketplaces: platform sets prices
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quasi-static vs. dynamic

for a large block of time (e.g., few hours), region (e.g., city-neighborhood),
mean system parameters are constant, predictable.

why not have hourly location-based prices?

. Source: whatsthefare.com

dynamic pricing vs. static pricing
dynamic: price changes instantaneously, in response to system state
(quasi) static: constant over several hours (predictably changing)
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model for studying rideshare pricing

focus on a single block of time, and a single region.
system state = number of available drivers

assumption 1: mean system parameters stay constant

state-dependent (dynamic) pricing policy:
if # of available drivers= A, then price for ride= P(A)

platform earns a (fixed) fraction γ of every dollar spent

assumption 2: the two sides react at different time-scales

myopic passengers: sensitive to instantaneous prices, availability
drivers are sensitive to long-term (average) earnings and ride-volume
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rideshare pricing model: the details
stochastic dynamics + passenger/driver strategic behavior

strategic model for passengers
a (potential) passenger requests a ride iff:
reservation value V > current price, and driver available

I V ∼ FV , i.i.d. across ride requests

µ0 = exogenous rate of “app opens”, µ = actual rate of requests
when A drivers present: µ = µ0FV (P(A))
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rideshare pricing model: the details
stochastic dynamics + passenger/driver strategic behavior

strategic behavior of drivers
a driver works on the platform iff:
reservation rate C × E[per-ride time spent] < E[per-ride earning]

I C ∼ FC , i.i.d. across drivers

Λ0 = “potential” driver-arrival rate, λ = actual driver-arrival rate

λ = Λ0
qexit

FC

(
E[Per-ride earning]

E
[
Idle (waiting) time + Ride time

]
)
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driver decision aids

. source: therideshareguy.com
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rideshare pricing model: overview
putting it together: equilibrium

given pricing policy P(·), equilibrium (λ, µ, π, η, ι) such that:
1 µ: passenger-arrival rate, given state A, satisfies:

µ = µ0FV (P(A))

2 λ: driver-arrival rate λ, given ι, η, satisfies:

λ = Λ0FC

(
η

ι+ τ

)

3 π: steady-state distribution of A given λ, µ
4 η: E[Earning per ride], given P(.) and π
5 ι: E[Idle time per ride], given P(.) and π
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platform equilibrium under static pricing
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platform equilibrium under static pricing
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platform equilibrium under static pricing

theorem: static pricing in large-market limit ⇒ demand-supply curve
rate of rides in large-market limit = min{available supply, available demand}
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Platform Equilibrium under Static Pricing

Theorem: Static pricing in large-market limit
Under static pricing (i.e., P(A) = p ∀A), let rn(p) denote the equilibrium
rate of completed rides in the nth system. Then:

rn(p)→ r̂(p) , min
{

Λ0

qexit
FC

(γp
τ

)
, µ0(1− FV (p))

}
Some intuition:

At any price, queueing system is always stable (else idle times blow up)
If supply < demand: Drivers become fully saturated
If supply > demand: Drivers forecast high idle times and don’t enter
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platform equilibrium under dynamic pricing

Sid Banerjee (Cornell ORIE) ridesharing January 23, 2018 31 / 39



platform equilibrium under dynamic pricing
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platform equilibrium under dynamic pricing
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static vs. dynamic pricing: optimality

theorem [Banerjee, Johari & Riquelme 2015]

if FV has increasing hazard rate: then
rate of rides for any dynamic policy ≤ rate of rides under optimal static pricing.
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static vs. dynamic pricing: sensitivity to parameters
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static vs. dynamic pricing: sensitivity to parameters

theorem [Banerjee, Johari & Riquelme 2015]
dynamic pricing ≥ ‘linear approximation’ of optimal static-pricing throughput
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summary, and the road ahead

main takeaway
ridesharing platforms: crucible for real-time decision making

well modeled by steady-state stochastic models
approximate control via new convex relaxation techniques
algorithm self-calibration via market mechanisms
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the road ahead

some short term targets
the value of state-dependent controls
– for general controls, objectives: no improvement possible
– for dispatch: can achieve exponential decay in m!
(joint work with Pengyu Qian and Yash Kanoria (Columbia))

non-stationary and/or bursty arrivals
algorthms for more complex problems
(policies for ride-pooling, reservation mechanisms)

going further beyond

impact of platform competition
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price of fragmentation in ridesharing markets
(with Thibault Séjourné (Ecole Polytechnique), S. Samaranayake (Cornell))

what is the ‘societal cost’ of decentralized optimization?
– multiple platforms with (random) exogenously partitioned demands
– individual platforms do optimal empty-vehicle rebalancing

price of fragmentation
increase in rebalancing costs of multiple platforms (with exogenous demand
splits) vs. single platform (under large-market scaling)
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price of fragmentation in vehicle-sharing markets

result (in brief)
as demand scales, the price of fragmentation undergoes a phase transition
based on structure of underlying demand flows
– both regimes observed in NYC taxi-data (≈ 10% fragmentation-affected)
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some short term targets
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– for general controls, objectives: no improvement possible
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non-stationary and/or bursty arrivals
algorthms for more complex problems
(policies for ride-pooling, reservation mechanisms)

going further beyond
impact of platform competition

the value of information: forecasting vs. self-calibration
ridesharing + public transit
appropriate mix of employees, freelancers and autonomous cars
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