# BAYESIAN MODELS FOR GRAPH DATA AND INVARIANCE IN NETWORKS

Peter Orbanz Columbia University

Collaborators Daniel M Roy (Cambridge) Cameron Freer (MIT)

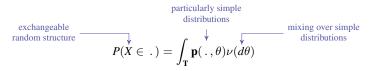
Balazs Szegedy (Toronto) James R Lloyd and Zoubin Ghahramani (Cambridge)

## EXCHANGEABLE RANDOM STRUCTURES

### Random structures

Sequences, graphs, matrices, *d*-arrays, trees, partitions, ranked lists, discrete measures, countable sets, hypergraphs, ...

## General theme



- ► Characterizes "maximal" observation model and parameter space.
- Explains statistical averaging.
- Yields a law of large numbers.

## Exchangeable sequences: de Finetti

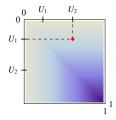
$$X = (X_1, X_2, \ldots)$$
 exchangeable  $\Leftrightarrow$   $P(X \in \ldots) = \int_{\mathbf{M}(\mathcal{X})} \prod_{i=1}^{\infty} \theta(X_i \in \ldots) \nu(d\theta)$ 

## EXCHANGEABLE RANDOM GRAPH

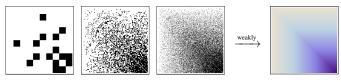
## Representation theorem (Aldous, Hoover, Kallenberg)

Any exchangeable graph can be sampled as:

- Sample  $W: [0, 1]^2 \longrightarrow [0, 1]$ (measurable and symmetric)
- Sample  $U_1, U_2, \ldots \sim_{iid} \text{Uniform}[0, 1]$
- Sample edge i,  $j \sim \text{Bernoulli}(W(U_i, U_j))$



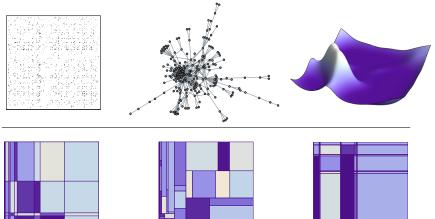
## Law of large numbers (Kallenberg '99)



Up to equivalence

# NONPARAMETRIC REGRESSION

#### WITH LLOYD, GHARAMANI, ROY (2012)



Infinite Relational Model (Kemp et al, '06)

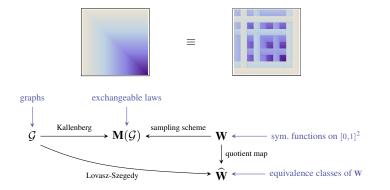


Mondrian process (Roy & Teh, '08)

Latent feature relational model (Miller et al, '09)

# LIFTINGS OF GRAPH LIMITS

#### with B. Szegedy



## Lifting Theorem (O. & Szegedy, 2011)

There exists a measurable mapping  $\xi : \widehat{\mathbf{W}} \longrightarrow \mathbf{W}$  such that

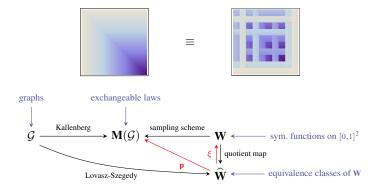
$$\xi(\hat{w}) \in [\hat{w}]_{\equiv}$$
 for all  $\hat{w} \in \widehat{\mathbf{W}}$ 

#### This result is not constructive.

Peter Orbanz

# LIFTINGS OF GRAPH LIMITS

#### with B. Szegedy



## Lifting Theorem (O. & Szegedy, 2011)

There exists a measurable mapping  $\xi : \widehat{\mathbf{W}} \longrightarrow \mathbf{W}$  such that

$$\xi(\hat{w}) \in [\hat{w}]_{\equiv}$$
 for all  $\hat{w} \in \widehat{\mathbf{W}}$ 

#### This result is not constructive.

## WHY ARE GRAPHONS SO COMPLICATED?

|                             | limit object         | randomness              |
|-----------------------------|----------------------|-------------------------|
| de Finetti<br>Aldous-Hoover | unique<br>not unique | two layers three layers |

### Permutations as constraints

$$P(X \in .) = \int \mathbf{p}(.,\theta)\nu(d\theta)$$

Informally: more constraints  $\rightarrow$  stronger representation result

### Exchangeability

| Structure           | index set                      | invariance under                                                               |
|---------------------|--------------------------------|--------------------------------------------------------------------------------|
| sequences<br>graphs | $\mathbb{N}$<br>$\mathbb{N}^2$ | <i>all</i> permutations of $\mathbb{N}$ product permutations $\pi \otimes \pi$ |



# SPARSE VS DENSE STRUCTURES

## Exchangeable graphs are dense (or empty)

$$p = \int_{\nabla} W(x, y) dx dy \qquad \qquad \hat{p}_n = \frac{\# \text{ edges observed in } G_n}{\# \text{ edges in complete graph}} = p \cdot \Theta(n^2) = \Theta(n^2)$$

This is a consequence of looking at the graph "globally".

## More generally

Exchangeable random structures have a density property.

Exchangeable binary sequence: cond. i.i.d. Bernoulli(P)  $\rightarrow$  limiting ratio of 1s is PCan we model network structure (not just edge density)? Under an exchangeable model, we will never

sample from

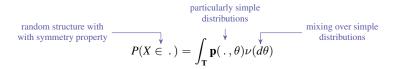


and see something like this



## BEYOND EXCHANGEABILITY

## Probabilistic symmetries



In principle, this also works for other symmetries than exchangeability.

#### Problem

Can we find a type of invariant random graphs that:

- 1. Can generate network structures?
- 2. Have useful statistical properties?

# INVARIANT DISTRIBUTIONS ON SPARSE GRAPHS

### Involution invariance

A random graph with a marked location (vertex) v is **involution invariant** if the distribution of the neighborhood of v is invariant under moving the location along the graph.

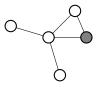
This is a property of a random **rooted graph** (G, v).

## Applicability

- ► Has a limit theory, but limit object contains much less information than dense graph limit.
- Much too weak for use in statistics.
- From graph theoretic perspective: Various interesting properties do not carry over to the limit.

Intuition: Too few constraints (1 shift per shift-length).





## SUMMARY

## Under exchangeability assumption

- Aldous-Hoover theorem explains statistical averaging, convergence of empirical measures and parameter space.
- Resulting graphs are dense, ie models are misspecified.

## Sparse graphs

- ► Various models, but no statistical framework.
- To obtain a de Finetti-like result, we would need an invariance weaker than exchangeability, but stronger than shift invariance.
- ▶ No useful example of such an invariance is known.