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Motivation

We do not want machine-learned systems to fail
when they get in the real world



Challenge one: Curly fries

(WE{ R} D} Technology  Science | Culture | Video | Reviews = Magazine

Liking curly fries on
Facebook reveals your
high1Q

By PHILIPPA WARR
12 Mar 2013

What you Like on Facebook could reveal your race, age, IQ,
sexuality and other personal data, even if you've set that
information to "private”.



Challenge one: Curly fries

(WE{ R} D} Technology  Science | Culture | Video | Reviews = Magazine

Liking curly fries on
Facebook reveals your
high1Q

By PHILIPPA WARR
12 Mar 2013

What you Like on Facebook could reveal your race, age, IQ,
sexuality and other personal data, even if you've set that
information to "private”.

Who doesn't like curly fries?



Challenge two: changes in environment

Learning to drive in California
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Drivine in Ann A
Learning to drive in California riving in Ann Arbor
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57.7% confidence 99.3% confidence

[Goodfellow et al. 15]



Challenge three: adversaries

“panda” “gibbon”
57.7% confidence 99.3% confidence

[Goodfellow et al. 15]

Paraphrased Quote:

We could put a transparent film on a stop sign, essentially imperceptible
to a human, and a computer would see the stop sign as air (Dan Boneh)



Stochastic optimization problems
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Stochastic optimization problems

minimize B(0) = Ep, [0(0: Z)] = / 00 2)dPy(2)

subject to 6 € O.

» Data/randomness is Z
» Loss function 6 — £(6; 2)
» Parameter space O is a nonempty closed (convex) set

4 '
» Observe data Z; ~ Py, i=1,...,n

Empirical risk minimization: Often, solve

~ ~ 1
0,, = argmin R,,(0) := — 0(0; Z;
gmin 1, (6) -2 0:2)



Distributional robustness

R(0) = Ep,[€(6; 2)]
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Distributional robustness

R(0,P) = ?EEEP[E(G;Z)]

\4

Uncertainty set P is set of “possible” distributions/worlds

v

Different choices of uncertainty yield different behaviors

v

Some sample-based uncertainty sets P certify future performance

v

Much work in optimization literature: [Delage & Ye 10, Ben-Tal et al.
13, Bertsimas et al. 14, Lam & Zhou 15, Gotoh et al. 15]

Rest of this talk: Two vignettes showing some aspects of this approach
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Vignette one: regularization by variance

» Any learning algorithm has bias (approximation error) and variance
(estimation error)

» From empirical Bernstein's inequality, with probability 1 —§

2Vars (£(6; X)) Clog
+\/ Pnn L 25

n

R(0) < R, (0)
——

bias

variance

Goal: Trade between these automatically and optimally by solving

—~ ~ 2Vars (£(0; X
0V € argmin R, (0) + \/ B, U8 X))
0eo n




Optimizing for bias and variance

Good idea: Directly minimize bias + variance, certify optimality!



Optimizing for bias and variance

Good idea: Directly minimize bias + variance, certify optimality!
Minor issue: variance is wildly non-convex

1.8

1.6

Figure: Variance of £(6,X) = |0 — X|
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Robust ERM

Goal:

migieng)ize R(0) = Ep,[¢(6; X)]

Solve sample average optimization problem

n
1
inimi E —0(0; X;
minimize 2 (0; X;)



Robust ERM

Goal:
minimize R(0) = Ep,[¢(0; X)]

0c®

Instead, solve distributionally robust optimization (RO) problem

n
minimize sup pil(0; X;)
00" pep, ; ’ ’

where P, , is some appropriately chosen set of vectors



Robust ERM

Goal:

mirelieng)ize R(0) = Ep,[¢(6; X)]

Instead, solve distributionally robust optimization (RO) problem
n
minimize sup Zpiﬁ(ﬁ; Xi)
0cO pepn,p i—1
where P, , is some appropriately chosen set of vectors

This bit of talk: Give a principled statistical approach to choosing P, ,
and give stochastic optimality certificates for RO.
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Empirical likelihood and robustness

Idea: Optimize over uncertainty set of possible distributions,

Prp = {Distributions P such that D(P|P,) <

SIS
H/_/

for some p > 0, where D(P|Q) = [(p/q — 1)*q

Define (and optimize) empirical likelihood upper confidence bound

R, (0,Pn,) := Jnax Ep[¢(0, X)] = max sz (0, X;)

G’Pnp pG np

Nice properties:
» Convex optimization problem

» Efficient solution methods [D. & Namkoong NIPS 16]
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Robust Optimization = Variance Regularization

Theorem (D. & Namkoong)

Assume that £ is bounded over the space of decision vectors 6. Then

Ru(6:P,) = Bo(6) + \/ 2Vers, COX) L oom).

n

Choose 6" to minimize robust empirical risk

R,(0,Py,) = Prg%ip Ep[e(0, = plél%f(p Zp, (0, X;)
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Optimal bias variance tradeoff
Choose 6™ to minimize robust empirical risk

grob = mi ; : p)<?l,
R (67", P, ,) ggg;nzé{xapw(e,xn D, (P”P”)—n}

Assume that © C RY compact with radius R and £(6; X) is M-Lipschitz.

Theorem (D. & Namkoong 17)
Let p =log % + dlogn. Then with probability at least 1 — ¢,

cMR

R(é\rob) < Rn(é\mb,,Pn’p) + P
—_——

optimality certificate

< min {R(9> Lo,/ 2PVar((8,£)) } | MR

0cO n n

p

optimal tradeoff

for some universal constant ¢ > 0.
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Experiment: Reuters Corpus (multi-label)

Problem: Classify documents as a subset of the 4 categories:

{Corporate, Economics, Government, Markets}

» Data: pairs = € R? represents document, y € {—1,1}* where y; =1
indicating = belongs j-th category.

> Loss £(6;, (x,y)) = log(1 + e=¥ 95 for each j = 1,...,4 and
©={0eR?: 0], <1000}.

> d = 47,236, n = 804,414. 10-fold cross-validation.

Table: Reuters Number of Examples

Corporate Economics Government Markets
381,327 119,920 239,267 204,820




Experiment: Reuters Corpus (multi-label)

Table: Reuters Corpus (%)

Precision Recall Corporate Economics
p train test  train test  train test train test

erm 9272 9277 9097 9096 90.2 90.25 67.53 67.56
10000 94.17 94.16 93.46 93.44 92,65 92.71 76.79 76.78




Experiment: Reuters Corpus (multi-label)
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Figure: Recall on rare category (Economics)
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Experiment: Reuters Corpus (multi-label)

Figure: Average logistic risk and confidence bound
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Vignette two: Wasserstein robustness
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when they get in the real world



Vignette two: Wasserstein robustness

We do not want machine-learned systems to fail
when they get in the real world

It is irresponsible to release systems into the world whose robustness
we do not understand



Challenges

“panda” “gibbon”

57.7% confidence 99.3% confidence
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A type of robustess

Robust optimization: instead of ¢, look at robust loss

le(0;2) := sup £(0;z+ A)
All<e

» Adversarial attacks and defenses with heuristics and more advanced
ideas [Goodfellow et al. 15, Jia and Liang 17, Papernot et al. 16,
Madry et al. 17]

Minor issue: Usually this is NP-hard
Further issue: In neural network,

fo(z) = Q{Urelu(eggrelu(' )

and is is NP-hard to compute supx ¢(fo(z + A))



Distributional robustness

Question: How can we figure out how to “change” distribution right way
to get robustness?



Distributional robustness

Question: How can we figure out how to “change” distribution right way
to get robustness?

Let ¢c: Z x Z — Ry be some cost function, and define Wasserstein
distance

We(P,Q) = ijI\l/[f/C(Zl,ZQ)dM(Zl,ZQ)

—sup {[161are) - @) 150 - 1) < e}

where M has P and @ as its marginal distributions



Wasserstein robustness

Look at distributionally robust risk

R(O,P) := 81P1)p {Ep[t(0; 2)] | P € P}
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Wasserstein robustness

Look at distributionally robust risk defined for p > 0

R(O,p) := s%p {Ep[t(0; Z)] s.t. W.(P, Py) < p}

» Allows changing support to harder distributions

» Studied in robust optimization literature [Shafieezadeh-Abadeh et al.
15, Esfahani & Kuhn 15, Blanchet and Murthy 16]

Minor issue: Often still NP-hard



A first idea

(Simple) insight: If £(60, z) is smooth in 6 and z, then life gets a bit easier



A first idea

(Simple) insight: If £(60, z) is smooth in 6 and z, then life gets a bit easier

The function

A
(052 = sup {0, 2) - S 12 B}
A

is efficient to compute (and differentiable, etc.) for large enough A



Duality and robustness

Theorem (D., Namkoong, Sinha)

Let Py be any distribution on Z and ¢ : Z x Z — Ry be any function.
Then

sup  Ep[l(6; Z)] = inf {/sup {06;2") = Xe(2', 2) } dPo(2) + )\p}
We(P,Py)<p A>0 2

= inf {Ep, [(x(0: 2)] + Ap} .



Duality and robustness

Theorem (D., Namkoong, Sinha)

Let Py be any distribution on Z and ¢ : Z x Z — Ry be any function.
Then

sup  Ep[l(6; Z)] = inf {/sup {06;2") = Xe(2', 2) } dPo(2) + )\p}
We(P,Py)<p A>0 2

= inf {Ep, [(x(0: 2)] + Ap} .

Idea: Ignore that infimum, pick a large enough A, and “solve”

mini@mize Ep, [x(0; Z)]



Stochastic gradient algorithm

mini@mize Ep, [¢x(0; Z)] = Ep, [sup {K(H;Z +A) - % HNI%H
A

Repeat:

1. Draw Z, N P

2. Compute (approximate) maximizer
~ A 9
Zy =~ argmax < ((0; z) — 5 lz — Zk||5
z

3. Update R
Okt1 = Ok — Vol (Ok; Zy)

where qy, is a stepsize



Stochastic gradient algorithm

minigmize Ep, [¢x(0; Z)] = Ep, [sup {K(H;Z +A) - % HNI%H
A

Repeat:
1. Draw Z, N P

2. Compute (approximate) maximizer
~ A 9
Zy =~ argmax < ((0; z) — 5 lz — Zk||5
z

3. Update R
Okt1 = Ok — Vol (Ok; Zy)

where qy, is a stepsize
Theorem(ish): This converges with all the typical convergence properties
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A certificate of robustness

A desiderata: We would like to certify that any learned 6 has robustness
properties

Theorem (D., Namkoong, Sinha 17)
With high probability, for all 0 € © and uniformly in p,

1< A
—Zsup {6(9;&' +A)—3 HA”g} +Ap
i A 2

. ~0()
> P:W(Slggo)gp {Ep [6(6; 2)]} T



A certificate of robustness

A desiderata: We would like to certify that any learned 6 has robustness
properties

Theorem (D., Namkoong, Sinha 17)
With high probability, for all 0 € ©

1< A —
LS s {02+ 2) - S 1A} + A0
oA 2

O(1)
> su Ep [4(0;2)]} — —
a P:W(P,POI;S/W(O){ P2l vn

Empirical estimate: get an approximate divergence

o) =5 >
=1

where Z; = argmax, {£(6; 2) — 3 ||z — Zi|3}

2

2,0) - 2.0)|,



Digging into neural networks

» Typically predict with
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Digging into neural networks

» Typically predict with

fo(x) =0, Urelu(egarelu(' )

where
Orelu(t) = min{1, (t)+}

» Replace ooy With

2
% if t <e
Usmooth(t): t+2 ife<t<1l-—e¢
_as t)+

+1 ift>t—e



Simple Visualization

y = sign(||z], - v2)

4 o
o % - ERM
3 —FGM
e WRM
@
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o 008090
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Experimental results: adversarial classification

» MNIST dataset with 3 convolutional layers, fully connected softmax
top layer
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Experimental results: adversarial classification

» MNIST dataset with 3 convolutional layers, fully connected softmax
top layer

100 -

102 B WRM

0 0.05 0.1 0.15 0.2
Eadv/coo



Reading tea leaves

Original

IFGM WRM



Reinforcement learning?
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