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Low-rank matrix completion problem

Given some entries of a matrix M, exactly recover (“complete”)
hidden entries

» Assumption to make well-posed: M has low rank
» M € R™" is rank-r means it has a “skinny” singular value
decomposition M = UEV T

» An n x n matrix of rank-r has roughly 2nr degrees of freedom.
Can we complete a matrix from & nr entries given only the
knowledge that it is rank-r 7



Need additional structure: incoherence
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> Low-rank assumption not enough. Need additional structural
assumptions
» Left and right leverage scores of M = UXV ' measure angles,
or “coherence” of row/columns with coordinate directions:
> L= [U(i,)|> = |UTel?, i€ [n]
> Ri= VG )I>=IVTel?, j€n]
» Additional structural assumption for i.i.d. random sampling:
uniformly flat leverage scores, or incoherence.

max L;, R; < Ki, K > 1 is not too big
i n

» Note 1 < K < 2 always.



Uniform-sampling matrix completion

[Candes Recht, 2009; Candés Tao, 2009; Recht 2011; Gross 2011; Chen 2013]

Theorem

Given an n x n matrix M of rank r.

Let Q C [n]? be a subset of the entries of M, where each entry M;;
is observed independently with probability p.

The nuclear norm minimization algorithm
min || X|[. st Xj= My, (i,j) €Q

will exactly recover M as its unique solution with probability at
least 1 — 712 provided that

C max{L;, R;} log?(n) < p.

Here, C > 1 is a universal constant.



Uniform-sampling matrix completion
[Candés Recht, 2009; Candés Tao, 2009; Recht 2011; Gross 2011; Chen 2013]

Theorem

Given an n X n matrix M of rank r.

Let Q C [n]? be a subset of the entries of M, where each entry M;;
is observed independently with probability p. The nuclear norm
minimization algorithm will exactly recover M as its unique
solution with probability at least 1 — % provided that

C max{L;, R;}log?(n) < p.
Here, C > 1 is a universal constant.
» E|Q| = pn® = C max{L;, R;} n? log?(n).

» Incoherence: E|Q| = CKrnlog?(n). Sharp up to the log?(n).

> There are many faster alternative algorithms for matrix
completion



A closer look at matrix leverage scores

Recall: M = UXVT is rank-r. L; := [|U(i,:)||%, R; == |[V(j,:)]?

» If an oracle told us (bounds on) the 2n leverage scores for M,
we might want to sample entries from a weighted probability
distribution where entry (i, /) is sampled prop. to its
“importance” L; + R;.

> (one-sided) leverage score sampling has long history in
column/row subset selection/matrix sketching [Mahoney and
Drineas, 2009; Mahoney 2011; Spielman and Srivastava 2011; Drineas et.
al. 2012]



Leveraged sampling

Theorem

Given an n x n matrix M of rank-r.

Let Q C [n]? be a subset of the entries of M where each entry M,;;
is observed independently with probability Pli,j].

Nuclear norm minimization will exactly recover M as its unique
solution with probability at least 1 — % provided that

C(Li+ R))log?(n) < Pli,j] <1, Vi,
Here, C > 1 is a universal constant.

» E[Q =", Pli,j]=2Crmn log?(n) is optimal up to log?(n).
» Key idea: refined dual certificate proof, concentration w.r.t
weighted L o, matrix norm instead of entrywise L, norm.

Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Completing any low-rank
matrix, provably. JMLR, 2015.



About knowing the leverage scores ...

> Leverage scores could be learned as priors from representative
training data

» However, typically leverage scores are not given beforehand

» What about /earning leverage scores from samples? 2n
leverage scores compared to 2nr degrees of freedom.

» Actually, we only need estimates of /arge leverage scores to
apply previous result



2-phase low-rank matrix completion

Given: budget of m samples, parameter v € (0, 1)

» Draw batch of m; = ym entries via i.i.d. uniform sampling

» Construct best rank-r approximation of resulting zero-filled
sample matrix, and compute its leverage scores L;, ;.

» Generate new batch of mp = (1 —v)m samples according to
weighted distribution L; + R;

» Use all m = m; 4+ my samples to reconstruct with, e.g.
nuclear norm minimization

(7 = .75 seems to be good choice)

Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Completing any low-rank
matrix, provably. JMLR, 2015.



A typical simulation result

Consider 400 x 400, rank-10 power law matrices of form M = DUVTD;
» U,V are 400 x 10 i.i.d. Gaussian.

» D is diagonal with D; = j=%.  « = 0: incoherent. o = 1: pretty
coherent

Oversampling factor (over n log(n)) for exact recovery
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» Results are robust to noise

» No theory yet for this.



An alternative 2-phase algorithm

» For rank-r M = UXV ' with condition number
k(M) = o1/0,, it holds:

n n
2 § 2 2 2 § 2 2
=1 i=1

» Implication: If M is well-conditioned, we can estimate its
leverage scores from sample row and column norms. More
amenable to theoretical analysis.



MC?: two-phase algorithm

Given a fixed budget of m samples:

> (Phase 1) Observe each entry of M with probability p. Let Y be
zero-filled sample matrix.

> (Estimate leverage scores) Set

~  RIYEAE 5, FIYEE
L 222 R — 22 e 1]
1Y% ’ 1Y%

> (Phase 2: Leveraged sampling) Set
Pli,j] < min{1, C log?(n) (Z,- + /3,-)}
Observe (i, j)th entry of M with probability P[i,].

> (Completion) Using all samples, complete to matrix M using e.g.
nuclear norm minimization

A. Eftekhari, M. Wakin, and R. Ward. MC?: A two-phase algorithm for
leveraged matrix completion. Information and Inference, 2017.



Theory for two-phase algorithm

Let
Loyy=zLoy>- =Ly, Ra =Re == Rn
be row/column leverage scores of rank-r M in decreasing order.

Theorem
Suppose the Phase 1 sampling probability satisfies

Tl
€[1:n] =

-
p> Crtk*log?(n) min T (Z Ly + Y RGy+ Liray + R(T+1)>
Then with probability > 1 — T,
1 ~
*L(;) < L(,) < 3/4;4L(,~), i€ [1 : T]

~

7R(j) < R(J) < 3H4R(j). jE [1 : T]

Wl w
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Theory for two-phase algorithm

Theorem
Using

T T
Cxttog? ()t min T (3718, 43Rl + L + R
' j=1 j=1

samples for Phase 1, and C'rnk? log®(n) samples for Phase 2, MC? will
recover the rank-r matrix M with probability > 1 — 7.



Theory for two-phase algorithm

Theorem
Using

T T
Cxttog? ()t min T (3718, 43Rl + L + R
' j=1 j=1

samples for Phase 1, and C'rnk? log®(n) samples for Phase 2, MC? will
recover the rank-r matrix M with probability > 1 — 7.

Cases:
> L Ry = 1. Take m =1 to recover (up to x) standard

1) =
O(nrlog®(n)) result.

> Lay(r), Ray(m) = /% and Lir41), Rir41) = £, and mis small.
Need O(Tnrlog?(n)) samples

> LGy < Lay®?fori=1:T and Ly > /L. Need
O(r?/3n*/3 log?(n)) samples

» compare to O(r'/2n3/2log?(n)) samples from uniform sampling



Simulations for two-phase algorithm
(50%/50% sample split between Phase 1 and Phase 2)
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Simulations for two-phase algorithm
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Simulations for two-phase algorithm
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Simulations for two-phase algorithm
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Summary

» Any rank-r matrix can be completed from
O(nQ(L(l) + Ra)) log?(n)) uniform samples. Good when
L1y, Ray € [, 1] are small.

» Any rank-r matrix can be completed from O(nrlog?(n))
samples using a weighted sampling strategy which depends on
the row and column leverage scores.

» A two-phase sampling procedure which first samples entries
uniformly, then estimates leverage scores and draws a second
batch of samples from estimated weighted sampling strategy
works well empirically, and has provably better sample
complexity compared to uniform sampling for e.g.
well-conditioned matrices with power-law decaying leverage
scores.



Future directions

» Diminish dependence on condition number in two-phase
sampling theory (using different algorithm?).

» Theory for noisy and/or nearly low-rank matrices

» Extensions to other types of “reduced sample complexity if
sparse and incoherent” type problems
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Thanks!



