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Low-rank matrix completion problem

Given some entries of a matrix M, exactly recover (“complete”)
hidden entries

I Assumption to make well-posed: M has low rank

I M ∈ Rn×n is rank-r means it has a “skinny” singular value
decomposition M = UΣVT

I An n× n matrix of rank-r has roughly 2nr degrees of freedom.
Can we complete a matrix from ≈ nr entries given only the
knowledge that it is rank-r ?



Need additional structure: incoherence
B3, κ = 100, η = 1.00

 

 

20 40 60 80 100

20

40

60

80

100 0

0.01

0.02

0.03

I Low-rank assumption not enough. Need additional structural
assumptions

I Left and right leverage scores of M = UΣVT measure angles,
or “coherence” of row/columns with coordinate directions:

I Li := ‖U(i , :)‖2 = ‖UT ei‖2, i ∈ [n]
I Rj := ‖V(j , :)‖2 = ‖VT ej‖2, j ∈ [n]

I Additional structural assumption for i.i.d. random sampling:
uniformly flat leverage scores, or incoherence.

max
i

Li ,Ri ≤ K
r

n
, K ≥ 1 is not too big

I Note 1 ≤ K ≤ n
r always.



Uniform-sampling matrix completion

[Candès Recht, 2009; Candès Tao, 2009; Recht 2011; Gross 2011; Chen 2013]

Theorem
Given an n × n matrix M of rank r .
Let Ω ⊂ [n]2 be a subset of the entries of M, where each entry Mij

is observed independently with probability p.

The nuclear norm minimization algorithm

min ‖X‖∗ s.t. Xij = Mij , (i , j) ∈ Ω

will exactly recover M as its unique solution with probability at
least 1− 1

n2
, provided that

C max{Li ,Rj} log2(n) ≤ p.

Here, C > 1 is a universal constant.
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Theorem
Given an n × n matrix M of rank r .
Let Ω ⊂ [n]2 be a subset of the entries of M, where each entry Mij

is observed independently with probability p. The nuclear norm
minimization algorithm will exactly recover M as its unique
solution with probability at least 1− 1

n2
, provided that

C max{Li ,Rj} log2(n) ≤ p.

Here, C > 1 is a universal constant.

I E|Ω| = pn2 = C max{Li ,Rj}n2 log2(n).

I Incoherence: E|Ω| = CKrn log2(n). Sharp up to the log2(n).

I There are many faster alternative algorithms for matrix
completion



A closer look at matrix leverage scores

Recall: M = UΣVT is rank-r . Li := ‖U(i , :)‖2,Rj := ‖V(j , :)‖2

I If an oracle told us (bounds on) the 2n leverage scores for M,
we might want to sample entries from a weighted probability
distribution where entry (i , j) is sampled prop. to its
“importance” Li + Rj .

I (one-sided) leverage score sampling has long history in
column/row subset selection/matrix sketching [Mahoney and

Drineas, 2009; Mahoney 2011; Spielman and Srivastava 2011; Drineas et.

al. 2012]



Leveraged sampling

Theorem
Given an n × n matrix M of rank-r .
Let Ω ⊂ [n]2 be a subset of the entries of M where each entry Mij

is observed independently with probability P[i , j ].
Nuclear norm minimization will exactly recover M as its unique
solution with probability at least 1− 1

n2
, provided that

C (Li + Rj) log2(n) ≤ P[i , j ] ≤ 1, ∀i , j

Here, C > 1 is a universal constant.

I E|Ω| =
∑

i ,j P[i , j ] = 2Crn log2(n) is optimal up to log2(n).

I Key idea: refined dual certificate proof, concentration w.r.t
weighted L2,∞ matrix norm instead of entrywise L∞ norm.

Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Completing any low-rank
matrix, provably. JMLR, 2015.



About knowing the leverage scores ...

I Leverage scores could be learned as priors from representative
training data

I However, typically leverage scores are not given beforehand

I What about learning leverage scores from samples? 2n
leverage scores compared to 2nr degrees of freedom.

I Actually, we only need estimates of large leverage scores to
apply previous result



2-phase low-rank matrix completion

Given: budget of m samples, parameter γ ∈ (0, 1)

I Draw batch of m1 = γm entries via i.i.d. uniform sampling

I Construct best rank-r approximation of resulting zero-filled
sample matrix, and compute its leverage scores L̂i , R̂j .

I Generate new batch of m2 = (1− γ)m samples according to
weighted distribution L̂i + R̂j

I Use all m = m1 + m2 samples to reconstruct with, e.g.
nuclear norm minimization

(γ = .75 seems to be good choice)

Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Completing any low-rank
matrix, provably. JMLR, 2015.



A typical simulation result

Consider 400× 400, rank-10 power law matrices of form M = DUVTD;

I U,V are 400× 10 i.i.d. Gaussian.

I D is diagonal with Dj = j−α. α = 0: incoherent. α = 1: pretty
coherent

I Results are robust to noise

I No theory yet for this.
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An alternative 2-phase algorithm

I For rank-r M = UΣVT with condition number
κ(M) = σ1/σr , it holds:

σ2r Li ≤
n∑

j=1

M2
i ,j ≤ σ21Li , σ2r Rj ≤

n∑
i=1

M2
i ,j ≤ σ21Rj

I Implication: If M is well-conditioned, we can estimate its
leverage scores from sample row and column norms. More
amenable to theoretical analysis.



MC 2: two-phase algorithm

Given a fixed budget of m samples:

I (Phase 1) Observe each entry of M with probability p. Let Y be
zero-filled sample matrix.

I (Estimate leverage scores) Set

L̂i ←
κ2‖Y [i , :]‖22
‖Y ‖2F

, R̂j ←
κ2‖Y [:, j ]‖22
‖Y ‖2F

, i , j ∈ [1 : n].

I (Phase 2: Leveraged sampling) Set

P[i , j ]← min{1,C log2(n)
(
L̂i + R̂j

)
}

Observe (i , j)th entry of M with probability P[i , j ].

I (Completion) Using all samples, complete to matrix M̂ using e.g.
nuclear norm minimization

A. Eftekhari, M. Wakin, and R. Ward. MC 2: A two-phase algorithm for
leveraged matrix completion. Information and Inference, 2017.



Theory for two-phase algorithm

Let

L(1) ≥ L(2) ≥ · · · ≥ L(n), R(1) ≥ R(2) ≥ · · · ≥ R(n)

be row/column leverage scores of rank-r M in decreasing order.

Theorem
Suppose the Phase 1 sampling probability satisfies

p ≥ Cτ−1κ4 log2(n) min
T∈[1:n]

T

 T∑
j=1

L2(j) +
T∑
j=1

R2
(j) + L(T+1) + R(T+1)


Then with probability ≥ 1− τ ,

1

3
L(i) ≤ L̂(i) ≤ 3κ4L(i), i ∈ [1 : T ]

1

3
R(j) ≤ R̂(j) ≤ 3κ4R(j). j ∈ [1 : T ]

I Fewer samples needed for estimating large leverage scores (at
least for well-conditioned matrices) than for completing matrix

A. Eftekhari, M. Wakin, and R. Ward. MC 2: A two-phase algorithm for
leveraged matrix completion. Information and Inference, 2017.
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Theory for two-phase algorithm

Theorem
Using

Cκ4 log2(n)n2 min
T∈[1:n]

T

 T∑
j=1

L2(j) +
T∑
j=1

R2
(j) + L(T+1) + R(T+1)


samples for Phase 1, and C ′rnκ2 log2(n) samples for Phase 2, MC 2 will
recover the rank-r matrix M with probability ≥ 1− τ .

Cases:

I L(1) = R(1) = r
n . Take m = 1 to recover (up to κ) standard

O(nr log2(n)) result.

I L(1):(T ),R(1):(T ) =
√

r
n , and L(T+1),R(T+1) = r

n , and m is small.

Need O(Tnr log2(n)) samples

I L(i) ≤ L(1)i
3/2 for i = 1 : T and L(1) ≥

√
r
n . Need

O(r2/3n4/3 log2(n)) samples

I compare to O(r1/2n3/2 log2(n)) samples from uniform sampling
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Simulations for two-phase algorithm

(50%/50% sample split between Phase 1 and Phase 2)

P1, κ = 1, η = 4.51

 

 

20 40 60 80 100

20

40

60

80

100
−0.04

−0.02

0

0.02

0.04

P2, κ = 1, η = 6.98

 

 

20 40 60 80 100

20

40

60

80

100 −0.06

−0.04

−0.02

0

0.02

0.04

0.06

P3, κ = 1, η = 13.40
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Simulations for two-phase algorithm

P5, κ = 100, η = 3.27
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P8, κ = 100, η = 19.99
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Simulations for two-phase algorithm

B1, κ = 1, η = 1.00
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Simulations for two-phase algorithm

B3, κ = 100, η = 1.00
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Summary

I Any rank-r matrix can be completed from
O(n2(L(1) + R(1)) log2(n)) uniform samples. Good when
L(1),R(1) ∈ [ rn , 1] are small.

I Any rank-r matrix can be completed from O(nr log2(n))
samples using a weighted sampling strategy which depends on
the row and column leverage scores.

I A two-phase sampling procedure which first samples entries
uniformly, then estimates leverage scores and draws a second
batch of samples from estimated weighted sampling strategy
works well empirically, and has provably better sample
complexity compared to uniform sampling for e.g.
well-conditioned matrices with power-law decaying leverage
scores.



Future directions

I Diminish dependence on condition number in two-phase
sampling theory (using different algorithm?).

I Theory for noisy and/or nearly low-rank matrices

I Extensions to other types of “reduced sample complexity if
sparse and incoherent” type problems

Thanks!
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