Learning One-hidden-layer Neural Networks With Landscape Design

Tengyu Ma

Facebook AI Research

Based on joint work with Rong Ge (Duke) and Jason D. Lee (USC)

Interfaces Between Users and Optimizers?

Users **Users** Optimization Researchers

gradient descent local search

Convex relaxation + Rounding

Interfaces Between Users and Optimizers?

Users

Optimization Researchers

 $f = f_1 + \cdots + f_n$ f_i is convex, smooth condition number, …

Solution

Stochastic gradient descent SAGA, SDCA, SVRG, ...

Optimization in Machine Learning: New Interfaces?

Users

Optimization Researchers

Optimization in Machine Learning: New Interfaces?

Users

Optimization Researchers

Possible Paradigm for Optimization Theory in ML?

 \triangleright Identify a family $\mathcal F$ of tractable functions

 $\mathcal{F} = \{f : \text{all (or most) local minma are approximate global minima}\}\$

 \triangleright Decide whether a function belongs to the family $\mathcal F$

Analysis techniques: linear algebra + probability, Kac-Rice formula, ...

 \triangleright Design new models and objective functions that are provably in $\mathcal F$

Some recent progress in simplified settings: [Hardt-M.-Recht'16, Soudry-Carmon'16, Liang-Xie-Song'17, Hardt-M.'17, Ge-Lee-M.'17]

NB: we also need to care about generalization error (but not in this talk)

This Talk: New Objective for Learning One-hidden-layer **Neural Networks**

 \triangleright Assume data (x, y) satisfies

$$
y = a^{\star \top} \sigma(B^{\star} x) + \xi
$$

 \triangleright Assume data x from Gaussian distribution

 \triangleright Goal: learn a function that predicts y given x

 \triangleright (σ = ReLU for all experiments in the talk)

Label $y = a^{\star \top} \sigma(B^{\star} x) + \xi$

The Straightforward Objective

Our prediction

$$
\hat{y} = a^{\mathsf{T}} \sigma(Bx)
$$

 \triangleright Loss function (population)

 $\mathbb{E}[(y - \hat{y})^2]$

The Straightforward Objective Fails

 $\geq d = 50$

 $\triangleright a^{\star} = 1$ and assumed to be known

 $\triangleright B^{\star} = I_{50 \times 50}$

 $\triangleright \xi = 0$

0.6 0.5 Parameter Error
0.3
0.2 0.1 $\overline{0}$ 3 Ω 1 $\overline{2}$ 4 5 **Iterations** \times 10⁴

dist(B, B^*) measured by a surrogate error $\geq \epsilon$

 \Leftrightarrow A row or a column of B is ϵ far away from the natural basis in infinity norm

Related Work

- \triangleright Non-overlapping filters (rows of B^* have disjoint supports) [Brutzkus-Globerson'17, Tian'17]
- \triangleright Initialization is sufficiently close to B^* in spectral norm [Li-Yuan'17]
	- \triangleright NB: the bad local min found is very far from B^* in spectral norm but close in infinity norm
- \triangleright Kernel-based methods [Zhang et al.'16,'17]
- \triangleright Tensor decomposition followed by local improvement algorithms [Janzamin et al.'15, Zhong et al.'17]
- \triangleright Empirical solution: over-parameterization [Livni et al.'14]

Users

Well, let me try a new $\left| \begin{array}{ccc} \bullet & \bullet & \bullet \end{array} \right|$ easy for me? model and a new loss …

Main goal of this this talk

Optimization Researchers

Is this function

Next slide: understand this better?

An Analytic Formula

$$
\text{Label } y = a^{\star \top} \sigma(B^{\star} x) + \xi
$$
\n
$$
\text{Loss } f(a, B) = \mathbb{E}[||y - a^{\top} \sigma(Bx)||^2]
$$

Theorem 1: suppose the rows of B are unit vectors and $x \sim N(0, I)$

$$
f(a,B) = \sum_{k \in \mathbb{N}} \hat{\sigma}_k^2 \left\| \sum_{i \in [m]} a_i^* b_i^* \otimes k - \sum_{i \in [m]} a_i b_i^{\otimes k} \right\|_F^2 + \text{const.}
$$

 $\hat{\sigma}_k$ = the Hermite coefficient of σ

 $\triangleright h_k = k$ -th normalized Hermite polynomial

$$
\triangleright \hat{\sigma}_k := \mathbb{E}[\sigma(x)h_k(x)]
$$

$$
B = \left[\begin{array}{c} b_1^\top \\ \vdots \\ b_m^\top \end{array} \right] \quad B^\star = \left[\begin{array}{c} {b_1^\star}^\top \\ \vdots \\ {b_m^\star}^\top \end{array} \right]
$$

 \mathbb{I}^2

$$
f(a,B) = \sum_{k \in \mathbb{N}} \hat{\sigma}_k^2 \left\| \sum_{i \in [m]} a_i^{\star} b_i^{\star \otimes k} - \sum_{i \in [m]} a_i b_i^{\otimes k} \right\|_F^2 + \text{const.}
$$

$$
:= f_k
$$

$$
\triangleright f_0 = (\sum a_i^{\star} - \sum a_i)^2
$$

 \triangleright Convex, not identifiable

$$
\triangleright f_1 = ||\sum a_i^{\star} b_i^{\star} - \sum a_i b_i||^2
$$

 \triangleright No spurious local min, not identifiable

►
$$
f_2 = ||\sum a_i^* b_i^* b_i^{*T} - \sum a_i b_i b_i^T||_F^2
$$

\n► No spurious local min? not
\nidentifiable

 $\triangleright f_4 = ||\sum a_i^{\star} b_i^{\star \otimes 4} - \sum a_i b_i^{\otimes 4}||_F^2$ **► ∃ bad saddle point, identifiable**

Each f_k solves a tensor decomposition problem

More difficult landscape? Stronger identifiability

> A sweat spot? A: yes, to some extent

Label $y = a^{\star \top} \sigma(B^{\star} x) + \xi$

New Loss Function

$$
f_{\gamma}(a,B) = \mathbb{E}[||y - a^{\mathsf{T}} \gamma(Bx)||^2]
$$

$$
f_{\gamma}(a,B) = \sum_{k \in \mathbb{N}} \left\| \hat{\sigma}_k \sum_{i \in [m]} a_i^{\star} b_i^{\star \otimes k} - \hat{\gamma}_k \sum_{i \in [m]} a_i b_i^{\otimes k} \right\|_F^2
$$

► Choosing γ such that $\hat{\gamma}_2 = \hat{\sigma}_2$, $\hat{\gamma}_4 = \hat{\sigma}_4$, and $\hat{\gamma}_k = 0$ for $k \neq 2,4$

$$
f_{\gamma}(a,B) = \hat{\sigma}_2^2 f_2 + \hat{\sigma}_4^2 f_4 + \text{const}
$$

 \triangleright Hope: the landscape of f_γ is better (and easier to analyze)

Now empirically it works!

Still we don't know how to analyze (more or provable alg. later)

 $\geq d = 50$

 \triangleright $a = 1$ and assumed to be known

 $\triangleright B^{\star} = I_{50 \times 50}$

 \triangleright fresh samples every iteration

dist(B, B^*) measured by a surrogate error $\geq \epsilon$

 \Leftrightarrow A row or a column of B is ϵ far away from the natural basis

Provable Non-convex Optimization Algorithms?

 \triangleright Key lemma for proving Theorem 1

$$
\mathbb{E}\left[y \cdot h_k(b_i^\top x)\right] = \hat{\sigma}_k \sum_{j \in [d]} a_j^{\star} \langle b_j^{\star}, b_i \rangle^k
$$

 \triangleright Extension (informal): for any polynomial p , there exists a function ϕ^p , such that

$$
\mathbb{E}\left[y \cdot \phi^p(b_i, x)\right] = \sum_{j \in [d]} a_j^* p(\langle b_j^*, b_i \rangle)
$$

 \triangleright for any polynomial q over two variables, $\exists \phi^q$ s.t.

$$
\mathbb{E}\left[y \cdot \phi^p(b_j, b_k, x)\right] = \sum_{j \in [d]} a_j^* q(\langle b_j^*, b_i \rangle, \langle b_j^*, b_k \rangle)
$$

 \triangleright Next: find an objective that uses these gadgets, and have no spurious local minimum

An Objective Function with Guarantees

$$
\min_{G(B)} G(B) = \sum_{i \in [d]} a_i^* \sum_{j \neq k} \langle b_i^*, b_j \rangle^2 \langle b_i^*, b_k \rangle^2 - \mu \sum_{i,j} a_i^* \langle b_i^*, b_j \rangle^4
$$

s.t $||b_i||^2 = 1, \forall i$

Theorem: assume $a^* \geq 0$, B^* is orthogonal

1. $G(B)$ can be estimated via samples: $G(B) = \mathbb{E}[y \cdot \phi(B, x)]$

2. A global minimum of G is equal to B^* up to permutation and scaling of the rows

3. All the local minima of G are global minima

 \triangleright Inspired by GHJY'15, which proved the case when $\mu = 0$ and $a_i^* = 1$

- \triangleright Can be extended to non-singular B^*
- \triangleright Limitation: B^* : $\mathbb{R}^d \to \mathbb{R}^m$ with $m \leq d$

 \triangleright Caveat: need huge batch size and training datasets

Conclusion

- \triangleright Landscape design: designing new models and objectives with good landscape properties
- \triangleright This paper: one first step for simplified neural nets

Open questions:

- \triangleright Sample efficiency: killing higher-order term seems to lose information
	- Ø Best empirical result: using | ⋅ | for training ReLU
- \triangleright Beyond Gaussian inputs
- \triangleright Understanding over-parameterization
- \triangleright More techniques for analyzing optimization landscape

Thank you!