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Max-k-CSP,,

- n variables taking values in [q] = {0,...,q — 1}.
- m constraints (each on k variables)

- Satisfy as many as possible.

- For a graph, given:
- Set of colors: [q]
- Constraints: one for each edge (u,v) € E

(uyv) = I or I or I

- Each constraint is a bijection from [q] to [q].
Can in fact consider difference equations

Unique Games

Xy — Xy = Cuv (mod q)
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Max-k-CSP(f)

- Characterized by f : [g]* — {0,1}.
- Each constraint is of the form
C,' = )((X,'1 + b,"lﬂ e ,X,'k + b,',k)

for it,...,ik € [n] and b; 1, ..., bk € [q]. (addition is mod q)

- Max-3-SAT: f = OR. Each G is a clause. b;; =1 if x;, is negated
in clause C;.

- Unique Games: f = EQUAL. For ith constraint (u, v), let iy = u,
i2 =V and Iet b,'72 - bi71 = Cuv

Xy =Xy = Cuv &  Xj+bi1 = x,+ bip.
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Approximating Max-k-CSP(f)

Relax the problem of finding maximum fraction of constraints
satisfiable.

<s > C

- Goal: Distinguish the cases OPT(®) < s and OPT(®) > c.

- If for some v < 1, all pairs (- ¢, ¢) can be solved, then can
approximate within factor ~.



Characterizing approximability

- Max-3-SAT [Hastad 97]: For all € > 0, distinguishing
(7/8 +€,1—€) is NP-hard (s < 7/8 is trivial).

<7/8+c¢€ >1—¢



Characterizing approximability

- Max-3-SAT [Hastad 97]: For all € > 0, distinguishing
(7/8 +€,1—€) is NP-hard (s < 7/8 is trivial).

<7/8+c¢€ >1—¢

- Unique Games Conjecture [Khot 02]: For all §,¢ > 0, there
with domain [q].

exists g such that it is NP-hard to distinguish (d,1 — ¢) for UG

<4

>1—c¢
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A dichotomy assuming the UGC

- [Raghavendra 08]: For all g, for all f, if a basic SDP cannot
distinguish (s, ¢) for Max-k-CSPg4(f), then for all € > 0, it is
NP-hard to distinguish (s + €, ¢ — €) assuming the UGC.

- "All-or-nothing”: Either a simple algorithm (approximately
solvable in almost linear time) can distinguish (s, c) or it is
NP-hard to do so.

- Equivalent to UGC (because UG is a 2-CSP).
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An unconditional version for LPs [Ghosh T 17]

- For all g, for all f, if a basic LP cannot distinguish (s, ¢) for
Max-k-CSP(f), then for all € > 0, no LP of any polynomial
size in the Sherali-Adams hierarchy can distinguish
(s+e€c—e).

- [CLRS 13], [KMR 17]: If no polysize LP in Sherali-Adams
hierarchy can distinguish (s + €, ¢ — €) then no polysize
extended formulation can distinguish (s + 2¢, ¢ — 2¢).

- "All-or-not-much” for LPs: If a simple (linear size) LP cannot
do it, neither can any polysize LP extended formulation.
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(Linear) Extended formulations

- Defined by a feasible polytope P, and a way of encoding instances
® as a (linear) objective function we.

- Introduce additional variables y. Optimize over polytope
P ={x |3y Ex+Fy=g,y>0}.

Image from [Fiorini-Rothvoss-Tiwari 2011]

P

Size equals #£variables + #constraints.

- Optimize objective objective (wo, x) (depending on ®) over P.
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Integer Program for CSPs

Variables: Z(; ) for i € [n] and b € [q]

Constraints: (Z;4))° = Zip Vi€ [n],be][q]

ZZ(,'J,) =1 ViE[n]

be[q]

Maximize: %Z Z (H Z(i,m)) ~f(a+(big,---

C aglgl’c \i€Sc

, bik))
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The Sherali-Adams LP hierarchy (t levels)

Variables: X(s o) for all [S| <t and « € [q]®. Represent E as

H Z(i,a,')

i€S

X(s.a) = E ~ Prob. vars in S assigned according to «

v
o

X(s,0)

Consistency: For all j ¢ S, Zbe[q] X(su{j},aob) = X(5,a)
X@7® == 1

Linear Program: For variables X(s o) € [0, 1] satisfying consistency

- 1
Maximize e Z Z X(sc,a) * F(a+ (b, .., bik))

€ ag[q]’c
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A local distribution view

Variables: X(s,q) for all |S| <t and o € [q]°. X(s5,a) > 0.

S
Distribution on [g]°

T

Distribution on [q] "

2 belq) X(Sutiaok) = X(5,a)

- Solution to LP defines local distributions consistent on intersections.
- n9 . gt variables.
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The basic LP

- Variables: X(s,q) for all constraints C and a € [q]*¢

X(sc,a) =~ Probability that vars in S¢ assigned according to «

Also define X(; ) for each j € [n], b € [q].

- Consistency: Vj € Sc., Vb € [q], Zaelq]sci X(sc..0) = X(j.b)
a(j)=b

- O(gk- m+ q- n) variables.



Inaccurate pictorial representations

Extended Formulations
SA hierarchy




Inaccurate pictorial representations

[CLRS 13]

Extended Formulations

SA hierarchy



Inaccurate pictorial representations

Max-Cut [CMM 09]

Max-3-SAT [Sch 08] [CLRS 13]
Pairwise [BCK 15] [KMR 17]
[KMOW 17] ——a

——

Extended Formulations

SA hierarchy



Inaccurate pictorial representations

Max-Cut [CMM 09]

Max-3-SAT [Sch 08] [CLRS 13]
Pairwise [BCK 15] [KMR17] 4
[KMOW 17] ==
[GT 17] (T

Extended Formulations

Basic LP  SA hierarchy
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A more precise version

- [Ghosh T 17]: For all g, for all f, if basic LP cannot
distinguish (s, ¢) for Max-k-CSP(f), then for all € > 0, no LP

given by t = O, (log’ﬁ)gn) levels of the Sherali-Adams

hierarchy can distinguish (s + ¢, ¢ — €).

- Using [CLRS 13, KMR 17]: For all € > 0, no extended
2
formulation of size exp (O6 (%)) can distinguish
(s+e€c—e).

- “Escalate” a hard instance for basic LP to a hard instance for
Sherali-Adams.
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What is a hard instance (¢ = 1)

- ®g is a (c, s) hard instance of basic LP, for ¢ = 1 if
- No assignment satisfies more than s fraction of constraints.

- All local distributions on constraints are supported only on
satisfying assignments.

- Using @, create a (level-t) hard instance ® where
- No assignment satisfies more than s fraction of constraints.

- There exist local distributions on all subsets S, |S| < t,
consistent on all intersections.

- Distribution on S only supported on assignments satisfying
(almost) all constraints in S.
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Intuition for the proof

Use hard instance (say ®g) for basic LP as a “template” to
produce a hard instance ® for Sherali-Adams.

- Instance @ looks “easily satisfiable” locally.

Think of instance as (hyper)graph. Each constraint adds a
hyperedge. Locally like (hyper)trees.

- Trees are easy.
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- Will use (s, ¢) hard instance ®¢ for basic
LP as template.

- Consider a bucket of variables B, for every
variable x, in ®g. |B,| = n.
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The gap construction

- Will use (s, ¢) hard instance ®¢ for basic
LP as template.

- Consider a bucket of variables B, for every
variable x, in ®g. |B,| = n.

:

- Repeat m times:

- Sample C ~ ®g. Let
C= f(X,'1 + b,"l, co X+ b,')k).
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The gap construction

:

Neoo0o0000o0o0
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- Will use (s, ¢) hard instance ®q for basic
LP as template.

- Consider a bucket of variables B, for every
variable x, in ®g. |B,| = n.

- Repeat m times:

- Sample C ~ ®g. Let
C= f"(X,'1 + b,')l, co X, T b,'yk).

- Pick jt" variable uniformly from
bucket B;. Let z; be the sampled
variable from this bucket.



The gap construction

- Will use (s, ¢) hard instance ®q for basic
LP as template.

- Consider a bucket of variables B, for every
@ L variable x, in ®g. |B,| = n.
¢ 6 o o o - Repeat m times:
e o o o
e ®»_ 0 o o - Sample C ~ ®q. Let
e\ ®e @ o o C="f(xy+bi1,...,x; + bi)
‘@ ‘ ) I
g N //'g -7 - Pick jt" variable uniformly from
bl - bucket B;. Let z; be the sampled
o & o o ¢ : J i
) variable from this bucket.
(] @ (] @ [
e ¢ o o o - Include constraint
B, B, B; B, Bs

f(ziy + bix,...,zji + bjx).



The gap construction

:
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- Will use (s, ¢) hard instance ®q for basic
LP as template.

- Consider a bucket of variables B, for every
variable x, in ®g. |B,| = n.

Repeat m times:

- Sample C ~ ®g. Let
C= f(X,'1 + b,')l, co X, T b,'yk).

- Pick jt" variable uniformly from
bucket B;. Let z; be the sampled
variable from this bucket.

- Include constraint

f(ziy + bix,...,zji + bjx).

- Similar constructions used by [GL 15],
[KTW 14]
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Bounding OPT(®)

- Fix an assignment ¢ to all vars in new
instance ¢

:

- Let D, be the empirical distribution on [q]
for variables in B,.

’
’
/

~
~
o000 0OGDOGOOO

-
~

Feeoecxdoogeoo
SN N NN NN NN
Seooo0o0o0o0o0o

N
O
w

u}
o)
I
i
it




Bounding OPT(®)

- Fix an assignment ¢ to all vars in new
instance ¢

:

- Let D, be the empirical distribution on [q]
for variables in B,.

’

~

-
~

SN N NN NN NN
oSN W N N NN NN N

N

—~

Feeoecxdoogeoo
rTYeececseee

~—



Bounding OPT(®)

- Fix an assignment ¢ to all vars in new
instance ¢

:

- Let D, be the empirical distribution on [g]

e o e o o for variables in B,.
e._ © (] O O
e ©_ 0 o o - Let x, be a var in constraint C € ®y. A
\ S N p .
. @ o o random copy of C sees a value for this
\ . . . . .
.6 6 o6 o variable independently distributed with D,.
e o, 6 o o
o & e o
e o O O
e e o O
Dy D, Ds Dy Ds
(3.3)
3°3
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Fix an assignment o to all vars in new
instance ¢

Let D, be the empirical distribution on [q]

for variables in B,.

Let x, be a var in constraint C € &q. A
random copy of C sees a value for this
variable independently distributed with D,.

For a fixed o,
E¢ [Fraction of sat. constraints in ®]

equals fraction satisfied in ®q by rounding
each x, independently from D, (< s).
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Fix an assignment o to all vars in new
instance ¢

Let D, be the empirical distribution on [q]

for variables in B,.

Let x, be a var in constraint C € &q. A
random copy of C sees a value for this
variable independently distributed with D,.

For a fixed o,
E¢ [Fraction of sat. constraints in ®]

equals fraction satisfied in ®q by rounding
each x, independently from D, (< s).

Concentration and union bound.
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Propagation on trees

Random hypergraphs have no cycles of
size O(log n). Locally like trees.

Each hyperedge e in a tree comes from a
constraint in ®3. Comes with a given
distribution on e (from basic LP).
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Breaking up the graph

Idea: Given set S C V, break S
into low-diameter components.
Connect all paths in each
component - always a tree, never a
forest.

Propagate on each component
tree.

If T CS, distribution on
components of T induced by S
should be same as obtained by
partitioning T.

Cut only few edges.
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Subset consistent partioning schemes

- [CMM 07]: Define a metric p on
random (hyper)graph H

(p(u,v))? ~ 1—(1— p)d@)

p embeds in ¢ on small sets S (for
small enough p).

- [CCGGP 98]: Low-diameter
decomposition of ¢, embedding.

- Easy to check partitioning is
consistent on subsets (¢; distances
determine configuration).
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The dimensionality problem

- Low-diameter decomposition in RY cuts each edge with probability

O(vp - d).

- For |S| = t, ¢; embedding is in Rf. Probability of cutting an edge is
O(y/i-T). Limits t to O(252).

- [JL 84]: Random Gaussian projection in O(log t) dimensions
approximately preserves all distances with high probability.

- For sets S and T, can one consistently discard bad Gaussian
projections?
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Open Problems

- Extend the result to n®(1) levels of the SA hierarchy. Will give a size
bound of exp(n®(})) on extended formulation size using [KMR17].

- "All-or-nothing” for Sum-of-Squares SDP hierarchy. Would give
strong evidence for the UGC. Even results for specific CSPs would
be interesting (k > 37).

- Can one avoid loss of € in ¢ when ¢ =1 (relevant for refutation)?
Exact refutation addressed by [TZ 16].



Thank You

Questions?



