From Weak to Strong LP Gaps
for all CSPs

1]C/

Mrinalkanti Ghosh
Madhur Tulsiani

Max-k-CSP

=] 5 = = £ DA

Max-k-CSP

- n Boolean variables.

Max-k-CSP

- n Boolean variables.

- m constraints (each on k variables)

Max-k-CSP

- n Boolean variables.
- m constraints (each on k variables)

- Satisfy as many as possible.

Max-3-SAT Max-Cut

x1 V x2 V Xi9
x3 V Xg V X3 X2

x5 V X7 V Xog

X5 X7 X3
X6

X1 # X2
X2 # X5
X3 7# X4

Max-k-CSP,

=] 5 = = £ DA

Max-k-CSP,,

- n variables taking values in [g] = {0,...,q — 1}.
- m constraints (each on k variables)

- Satisfy as many as possible.

Max-k-CSP,,

- n variables taking values in [q] = {0,...,q — 1}.
- m constraints (each on k variables)

- Satisfy as many as possible.

- For a graph, given:
- Set of colors: [q]

Unique Games
' - Constraints: one for each edge (u,v) € E

Max-k-CSP,,

- n variables taking values in [q] = {0,...,q — 1}.
- m constraints (each on k variables)

- Satisfy as many as possible.

- For a graph, given:
- Set of colors: [q]
- Constraints: one for each edge (u,v) € E

(uyv) = I or I or I

- Each constraint is a bijection from [q] to [q].
Can in fact consider difference equations

Unique Games

Xy — Xy = Cuv (mod q)

Max-k-CSP(f)

- Characterized by f : [g]* — {0,1}.

Max-k-CSP(f)

- Characterized by f : [g]* — {0,1}.
- Each constraint is of the form
C,' = f (X,'1 + b,"l, e ,X,'k + b,',k)

for it,...,ik € [n] and b; 1, ..., bk € [q]. (addition is mod q)

Max-k-CSP(f)

- Characterized by f : [g]* — {0,1}.
- Each constraint is of the form
C,' =)((X,'1 + b,"lq, e ,X,'k + b,',k)

for it,...,ik € [n] and b; 1, ..., bk € [q]. (addition is mod q)

- Max-3-SAT: f = OR. Each G is a clause. b;; =1 if x;, is negated
in clause C;.

Max-k-CSP(f)

- Characterized by f : [g]* — {0,1}.
- Each constraint is of the form
C,' =)((X,'1 + b,"lﬂ e ,X,'k + b,',k)

for it,...,ik € [n] and b; 1, ..., bk € [q]. (addition is mod q)

- Max-3-SAT: f = OR. Each G is a clause. b;; =1 if x;, is negated
in clause C;.

- Unique Games: f = EQUAL. For ith constraint (u, v), let iy = u,
i2 =V and Iet b,'72 - bi71 = Cuv

Xy =Xy = Cuv & Xj+bi1 = x,+ bip.

Approximating Max-k-CSP(f)

Relax the problem of finding maximum fraction of constraints
satisfiable.

Approximating Max-k-CSP(f)

Relax the problem of finding maximum fraction of constraints
satisfiable.

>cC

Approximating Max-k-CSP(f)

Relax the problem of finding maximum fraction of constraints
satisfiable.

>cC

- Goal: Distinguish the cases OPT(®) < s and OPT(®) > c.

Approximating Max-k-CSP(f)

Relax the problem of finding maximum fraction of constraints
satisfiable.

<s > C

- Goal: Distinguish the cases OPT(®) < s and OPT(®) > c.

- If for some v < 1, all pairs (- ¢, ¢) can be solved, then can
approximate within factor ~.

Characterizing approximability

- Max-3-SAT [Hastad 97]: For all € > 0, distinguishing
(7/8 +€,1—€) is NP-hard (s < 7/8 is trivial).

<7/8+c¢€ >1—¢

Characterizing approximability

- Max-3-SAT [Hastad 97]: For all € > 0, distinguishing
(7/8 +€,1—€) is NP-hard (s < 7/8 is trivial).

<7/8+c¢€ >1—¢

- Unique Games Conjecture [Khot 02]: For all §,¢ > 0, there
with domain [q].

exists g such that it is NP-hard to distinguish (d,1 — ¢) for UG

<4

>1—c¢

A dichotomy assuming the UGC

- [Raghavendra 08]: For all g, for all f, if a basic SDP cannot
distinguish (s, ¢) for Max-k-CSPg4(f), then for all € > 0, it is
NP-hard to distinguish (s + €, ¢ — €) assuming the UGC.

A dichotomy assuming the UGC

- [Raghavendra 08]: For all g, for all f, if a basic SDP cannot
distinguish (s, ¢) for Max-k-CSPg4(f), then for all € > 0, it is
NP-hard to distinguish (s + €, ¢ — €) assuming the UGC.

- "All-or-nothing”: Either a simple algorithm (approximately
solvable in almost linear time) can distinguish (s, c) or it is
NP-hard to do so.

A dichotomy assuming the UGC

- [Raghavendra 08]: For all g, for all f, if a basic SDP cannot
distinguish (s, ¢) for Max-k-CSPg4(f), then for all € > 0, it is
NP-hard to distinguish (s + €, ¢ — €) assuming the UGC.

- "All-or-nothing”: Either a simple algorithm (approximately
solvable in almost linear time) can distinguish (s, c) or it is
NP-hard to do so.

- Equivalent to UGC (because UG is a 2-CSP).

An unconditional version for LPs [Ghosh T 17]

- For all g, for all f, if a basic LP cannot distinguish (s, ¢) for
Max-k-CSP(f), then for all € > 0, no LP of any polynomial
size in the Sherali-Adams hierarchy can distinguish
(s+e€c—e).

An unconditional version for LPs [Ghosh T 17]

- For all g, for all f, if a basic LP cannot distinguish (s, ¢) for
Max-k-CSP(f), then for all € > 0, no LP of any polynomial
size in the Sherali-Adams hierarchy can distinguish
(s+e€c—e).

- [CLRS 13], [KMR 17]: If no polysize LP in Sherali-Adams
hierarchy can distinguish (s + €, ¢ — €) then no polysize
extended formulation can distinguish (s + 2¢, ¢ — 2¢).

An unconditional version for LPs [Ghosh T 17]

- For all g, for all f, if a basic LP cannot distinguish (s, ¢) for
Max-k-CSP(f), then for all € > 0, no LP of any polynomial
size in the Sherali-Adams hierarchy can distinguish
(s+e€c—e).

- [CLRS 13], [KMR 17]: If no polysize LP in Sherali-Adams
hierarchy can distinguish (s + €, ¢ — €) then no polysize
extended formulation can distinguish (s + 2¢, ¢ — 2¢).

- "All-or-not-much” for LPs: If a simple (linear size) LP cannot
do it, neither can any polysize LP extended formulation.

(Linear) Extended formulations

- Defined by a feasible polytope P, and a way of encoding instances
® as a (linear) objective function we.

(Linear) Extended formulations

- Defined by a feasible polytope P, and a way of encoding instances
® as a (linear) objective function we.

- Introduce additional variables y. Optimize over polytope
P ={x |3y Ex+Fy=g,y>0}.

Image from [Fiorini-Rothvoss-Tiwari 2011]

(Linear) Extended formulations

- Defined by a feasible polytope P, and a way of encoding instances
® as a (linear) objective function we.

- Introduce additional variables y. Optimize over polytope
P ={x |3y Ex+Fy=g,y>0}.

Image from [Fiorini-Rothvoss-Tiwari 2011]

(Linear) Extended formulations

- Defined by a feasible polytope P, and a way of encoding instances
® as a (linear) objective function we.

- Introduce additional variables y. Optimize over polytope
P ={x |3y Ex+Fy=g,y>0}.

Image from [Fiorini-Rothvoss-Tiwari 2011]

ﬁ

Size equals #£variables + #constraints.

(Linear) Extended formulations

- Defined by a feasible polytope P, and a way of encoding instances
® as a (linear) objective function we.

- Introduce additional variables y. Optimize over polytope
P ={x |3y Ex+Fy=g,y>0}.

Image from [Fiorini-Rothvoss-Tiwari 2011]

P

Size equals #£variables + #constraints.

- Optimize objective objective (wo, x) (depending on ®) over P.

Integer Program for CSPs

Variables: Z(;) for i € [n] and b € [q]

Constraints: (Z;4))° = Zip Vi€ [n],be][q]

ZZ(,'J,) =1 Vie[n]

be[q]

Integer Program for CSPs

Variables: Z(;) for i € [n] and b € [q]

Constraints: (Z;4))° = Zip Vi€ [n],be][q]

ZZ(,'J,) =1 ViE[n]

be[q]

Maximize: %Z Z (H Z(i,m)) ~f(a+(big,---

C aglgl’c \i€Sc

, bik))

The Sherali-Adams LP hierarchy (t levels)

The Sherali-Adams LP hierarchy (t levels)

Variables: X(s o) for all [S| <t and « € [q]®. Represent E as

H Z(i,(x,')

i€S

X(s,0) = E =~ Prob. vars in S assigned according to «

Xy = 0

The Sherali-Adams LP hierarchy (t levels)

Variables: X(s o) for all [S| <t and « € [q]®. Represent E as

H Z(i,(x,')

i€S

X(s,0) = E =~ Prob. vars in S assigned according to «

Xy = 0

The Sherali-Adams LP hierarchy (t levels)

Variables: X(s o) for all [S| <t and « € [q]®. Represent E as

H Z(i,a,')

i€S

X(s.a) = E =~ Prob. vars in S assigned according to «

Y
o

X(s.a)

Consistency: For all j ¢ S, Zbe[q] X(su{j},aob) = X(5,a)
X@7® == 1

The Sherali-Adams LP hierarchy (t levels)

Variables: X(s o) for all [S| <t and « € [q]®. Represent E as

H Z(i,a,')

i€S

X(s.a) = E ~ Prob. vars in S assigned according to «

v
o

X(s,0)

Consistency: For all j ¢ S, Zbe[q] X(su{j},aob) = X(5,a)
X@7® == 1

Linear Program: For variables X(s o) € [0, 1] satisfying consistency

- 1
Maximize e Z Z X(sc,a) * F(a+ (b, .., bik))

€ ag[q]’c

A local distribution view

Variables: X(s 4) for all |S| <t and a € [g]°. X(s,a) > 0.

A local distribution view

Variables: X(s,q) for all |S| <t and o € [q]°. X(s5,a) > 0.

S
Distribution on [g]°

DA

A local distribution view

Variables: X(s,q) for all |S| <t and o € [q]°. X(s5,a) > 0.

S
Distribution on [g]°

T

Distribution on [q] "

> belq) X(suljtack) = X(s,a)

A local distribution view

Variables: X(s,q) for all |S| <t and o € [q]°. X(s5,a) > 0.

S
Distribution on [g]°

T

Distribution on [q] "

2 belq) X(Sutiaok) = X(5,a)

- Solution to LP defines local distributions consistent on intersections.

A local distribution view

Variables: X(s,q) for all |S| <t and o € [q]°. X(s5,a) > 0.

S
Distribution on [g]°

T

Distribution on [q] "

2 belq) X(Sutiaok) = X(5,a)

- Solution to LP defines local distributions consistent on intersections.
- n9 . gt variables.

The basic LP

=] 5 = = £ DA

The basic LP

- Variables: X(s.) for all constraints C and a € [q]°¢

X(sc,a) =~ Probability that vars in S¢ assigned according to «

Also define X(;) for each j € [n], b € [q].

The basic LP

- Variables: X(s.) for all constraints C and a € [q]°¢

X(sc,a) =~ Probability that vars in S¢ assigned according to «

Also define X(;) for each j € [n], b € [q].

- Consistency: Vj € S¢,, Vb € [q], Zae[qf@' X(s¢,.0) = X(j.b)
a(j)=b

The basic LP

- Variables: X(s,q) for all constraints C and a € [q]*¢

X(sc,a) =~ Probability that vars in S¢ assigned according to «

Also define X(;) for each j € [n], b € [q].

- Consistency: Vj € Sc., Vb € [q], Zaelq]sci X(sc..0) = X(j.b)
a(j)=b

The basic LP

- Variables: X(s,q) for all constraints C and a € [q]*¢

X(sc,a) =~ Probability that vars in S¢ assigned according to «

Also define X(;) for each j € [n], b € [q].

- Consistency: Vj € Sc., Vb € [q], Zaelq]sci X(sc..0) = X(j.b)
a(j)=b

- O(gk- m+ q- n) variables.

Inaccurate pictorial representations

Extended Formulations
SA hierarchy

Inaccurate pictorial representations

[CLRS 13]

Extended Formulations

SA hierarchy

Inaccurate pictorial representations

Max-Cut [CMM 09]

Max-3-SAT [Sch 08] [CLRS 13]
Pairwise [BCK 15] [KMR 17]
[KMOW 17] ——a

——

Extended Formulations

SA hierarchy

Inaccurate pictorial representations

Max-Cut [CMM 09]

Max-3-SAT [Sch 08] [CLRS 13]
Pairwise [BCK 15] [KMR17] 4
[KMOW 17] ==
[GT 17] (T

Extended Formulations

Basic LP SA hierarchy

A more precise version

- [Ghosh T 17]: For all g, for all f, if basic LP cannot
distinguish (s, ¢) for Max-k-CSP(f), then for all € > 0, no LP

given by t = O, (log’ﬁ)gn) levels of the Sherali-Adams

hierarchy can distinguish (s + ¢, ¢ — €).

A more precise version

- [Ghosh T 17]: For all g, for all f, if basic LP cannot
distinguish (s, ¢) for Max-k-CSP(f), then for all € > 0, no LP

given by t = O, (log n) levels of the Sherali-Adams

loglogn
hierarchy can distinguish (s + ¢, ¢ — €).

- Using [CLRS 13, KMR 17]: For all € > 0, no extended
2
formulation of size exp (O6 (%)) can distinguish
(s+e€c—e).

A more precise version

- [Ghosh T 17]: For all g, for all f, if basic LP cannot
distinguish (s, ¢) for Max-k-CSP(f), then for all € > 0, no LP

given by t = O, (log’ﬁ)gn) levels of the Sherali-Adams

hierarchy can distinguish (s + ¢, ¢ — €).

- Using [CLRS 13, KMR 17]: For all € > 0, no extended
2
formulation of size exp (O6 (%)) can distinguish
(s+e€c—e).

- “Escalate” a hard instance for basic LP to a hard instance for
Sherali-Adams.

What is a hard instance (¢ = 1)

- ®g is a (c, s) hard instance of basic LP, for ¢ = 1 if

What is a hard instance (¢ = 1)

- ®g is a (c, s) hard instance of basic LP, for ¢ = 1 if

- No assignment satisfies more than s fraction of constraints.

What is a hard instance (¢ = 1)

- ®g is a (c, s) hard instance of basic LP, for ¢ = 1 if
- No assignment satisfies more than s fraction of constraints.

- All local distributions on constraints are supported only on
satisfying assignments.

What is a hard instance (¢ = 1)

- ®g is a (c, s) hard instance of basic LP, for ¢ = 1 if
- No assignment satisfies more than s fraction of constraints.

- All local distributions on constraints are supported only on
satisfying assignments.

- Using @, create a (level-t) hard instance ® where
- No assignment satisfies more than s fraction of constraints.

What is a hard instance (¢ = 1)

- ®g is a (c, s) hard instance of basic LP, for ¢ = 1 if
- No assignment satisfies more than s fraction of constraints.

- All local distributions on constraints are supported only on
satisfying assignments.

- Using @, create a (level-t) hard instance ® where
- No assignment satisfies more than s fraction of constraints.

- There exist local distributions on all subsets S, |S| < t,
consistent on all intersections.

What is a hard instance (¢ = 1)

- ®g is a (c, s) hard instance of basic LP, for ¢ = 1 if
- No assignment satisfies more than s fraction of constraints.

- All local distributions on constraints are supported only on
satisfying assignments.

- Using @, create a (level-t) hard instance ® where
- No assignment satisfies more than s fraction of constraints.

- There exist local distributions on all subsets S, |S| < t,
consistent on all intersections.

- Distribution on S only supported on assignments satisfying
(almost) all constraints in S.

Intuition for the proof

- Use hard instance (say ®g) for basic LP as a “template” to
produce a hard instance ® for Sherali-Adams.

Intuition for the proof

- Use hard instance (say ®g) for basic LP as a “template” to
produce a hard instance ® for Sherali-Adams.

- Instance ® looks “easily satisfiable” locally.

Intuition for the proof

- Use hard instance (say ®g) for basic LP as a “template” to
produce a hard instance ® for Sherali-Adams.

- Instance @ looks “easily satisfiable” locally.

- Think of instance as (hyper)graph. Each constraint adds a
hyperedge. Locally like (hyper)trees.

Intuition for the proof

Use hard instance (say ®g) for basic LP as a “template” to
produce a hard instance ® for Sherali-Adams.

- Instance @ looks “easily satisfiable” locally.

Think of instance as (hyper)graph. Each constraint adds a
hyperedge. Locally like (hyper)trees.

- Trees are easy.

The gap construction

- Will use (s, ¢) hard instance ®¢ for basic
LP as template.

The gap construction

- Will use (s, ¢) hard instance ®¢ for basic
LP as template.

- Consider a bucket of variables B, for every
variable x, in ®g. |B,| = n.

eeo0o00o00o0o0
Teeooe0o00o00o0
Teooeoeoeo0eooe
eooo0o0o0o0o0o0
Teoo0oo0o0eo0o0oeo

oy

u}
o)
I
i
it

The gap construction

- Will use (s, ¢) hard instance ®¢ for basic
LP as template.

- Consider a bucket of variables B, for every
variable x, in ®g. |B,| = n.

:

- Repeat m times:

- Sample C ~ ®g. Let
C= f(X,'1 + b,"l, co X+ b,')k).

eeo0o00o00o0o0
Teeooe0o00o00o0
Teooeoeoeo0eooe
eooo0o0o0o0o0o0
Teoo0oo0o0eo0o0oeo

oy

The gap construction

:

Neoo0o0000o0o0

000000

[}

000000

[J

B,

0000 O0O

O

Bs

- Will use (s, ¢) hard instance ®q for basic
LP as template.

- Consider a bucket of variables B, for every
variable x, in ®g. |B,| = n.

- Repeat m times:

- Sample C ~ ®g. Let
C= f"(X,'1 + b,')l, co X, T b,'yk).

- Pick jt" variable uniformly from
bucket B;. Let z; be the sampled
variable from this bucket.

The gap construction

- Will use (s, ¢) hard instance ®q for basic
LP as template.

- Consider a bucket of variables B, for every
@ L variable x, in ®g. |B,| = n.
¢ 6 o o o - Repeat m times:
e o o o
e ®»_ 0 o o - Sample C ~ ®q. Let
e\ ®e @ o o C="f(xy+bi1,...,x; + bi)
‘@ ‘) I
g N //'g -7 - Pick jt" variable uniformly from
bl - bucket B;. Let z; be the sampled
o & o o ¢ : J i
) variable from this bucket.
(] @ (] @ [
e ¢ o o o - Include constraint
B, B, B; B, Bs

f(ziy + bix,...,zji + bjx).

The gap construction

:

e o
o o
O‘\ \V}
(] ‘\ [J
o \o
o o,
e &
e o
e o
B B

’

~

7

~

~

XXX XXX

X e

0 00

0 00

[}

»

Teoeoo0o000000

o

- Will use (s, ¢) hard instance ®q for basic
LP as template.

- Consider a bucket of variables B, for every
variable x, in ®g. |B,| = n.

Repeat m times:

- Sample C ~ ®g. Let
C= f(X,'1 + b,')l, co X, T b,'yk).

- Pick jt" variable uniformly from
bucket B;. Let z; be the sampled
variable from this bucket.

- Include constraint

f(ziy + bix,...,zji + bjx).

- Similar constructions used by [GL 15],
[KTW 14]

Bounding OPT(®)

- Fix an assignment ¢ to all vars in new

instance ¢

...\./.....
~
4 ~
’ S
(AN N NNP N N
’ -7
-

-
\\
C N B 0000

Bounding OPT(®)

- Fix an assignment ¢ to all vars in new
instance ¢

:

- Let D, be the empirical distribution on [q]
for variables in B,.

’
’
/

~
~
o000 0OGDOGOOO

-
~

Feeoecxdoogeoo
SN N NN NN NN
Seooo0o0o0o0o0o

N
O
w

u}
o)
I
i
it

Bounding OPT(®)

- Fix an assignment ¢ to all vars in new
instance ¢

:

- Let D, be the empirical distribution on [q]
for variables in B,.

’

~

-
~

SN N NN NN NN
oSN W N N NN NN N

N

—~

Feeoecxdoogeoo
rTYeececseee

~—

Bounding OPT(®)

- Fix an assignment ¢ to all vars in new
instance ¢

:

- Let D, be the empirical distribution on [g]

e o e o o for variables in B,.
e._ © (] O O
e ©_ 0 o o - Let x, be a var in constraint C € ®y. A
\ S N p .
. @ o o random copy of C sees a value for this
\
.6 6 o6 o variable independently distributed with D,.
e o, 6 o o
o & e o
e o O O
e e o O
Dy D, Ds Dy Ds
(3.3)
3°3

Bounding OPT(®)

:

®© 0.0 0
i

® 0

d
0 09
A

-
~

(NN ¢

>

~

7
/

~
~

—~

~

Ltj\w D

i W

~—

0000000

(]

IS

00000000

F

Fix an assignment o to all vars in new
instance ¢

Let D, be the empirical distribution on [q]

for variables in B,.

Let x, be a var in constraint C € &q. A
random copy of C sees a value for this
variable independently distributed with D,.

For a fixed o,
E¢ [Fraction of sat. constraints in ®]

equals fraction satisfied in ®q by rounding
each x, independently from D, (< s).

Bounding OPT(®)

:

®© 0.0 0
i

® 0

d
0 09
A

-
~

(NN ¢

>

~

7

~
~

—~

~

/
00000

Ltj\w D

i W

~—

0000000

(]

IS

00000000

F

Fix an assignment o to all vars in new
instance ¢

Let D, be the empirical distribution on [q]

for variables in B,.

Let x, be a var in constraint C € &q. A
random copy of C sees a value for this
variable independently distributed with D,.

For a fixed o,
E¢ [Fraction of sat. constraints in ®]

equals fraction satisfied in ®q by rounding
each x, independently from D, (< s).

Concentration and union bound.

Propagation on trees

- Random hypergraphs have no cycles of
size O(log n). Locally like trees.

Propagation on trees

- Random hypergraphs have no cycles of
size O(log n). Locally like trees.

- Each hyperedge e in a tree comes from a
constraint in ®3. Comes with a given
® distribution on e (from basic LP).

Propagation on trees

- Random hypergraphs have no cycles of
size O(log n). Locally like trees.

- Each hyperedge e in a tree comes from a
constraint in ®3. Comes with a given
® distribution on e (from basic LP).

- Propagate to child conditioned on parent.
N N Can be done by consistency on variables
(vertices).

Propagation on trees

- Random hypergraphs have no cycles of
size O(log n). Locally like trees.

- Each hyperedge e in a tree comes from a
constraint in ®3. Comes with a given

o distribution on e (from basic LP).
Q/* L 7\' - Propagate to child conditioned on parent.
E A Can be done by consistency on variables
rot ' (vertices).

Propagation on trees

- Random hypergraphs have no cycles of
size O(log n). Locally like trees.

- Each hyperedge e in a tree comes from a
constraint in ®3. Comes with a given

o distribution on e (from basic LP).
Q/* L 7\' - Propagate to child conditioned on parent.
E A Can be done by consistency on variables
rot vt (vertices).

Propagation on trees

- Random hypergraphs have no cycles of
size O(log n). Locally like trees.

- Each hyperedge e in a tree comes from a
constraint in ®3. Comes with a given

o distribution on e (from basic LP).
Q/* L 7\' - Propagate to child conditioned on parent.
E A Can be done by consistency on variables
rot vt (vertices).

Propagation on trees

- Random hypergraphs have no cycles of
size O(log n). Locally like trees.

- Each hyperedge e in a tree comes from a
constraint in ®3. Comes with a given

o distribution on e (from basic LP).
Q/* L 7\' - Propagate to child conditioned on parent.
E A Can be done by consistency on variables
rot vt (vertices).

- Does not depend on choice of root.

Propagation on trees

- Random hypergraphs have no cycles of
size O(log n). Locally like trees.

- Each hyperedge e in a tree comes from a
constraint in ®3. Comes with a given
distribution on e (from basic LP).

- Propagate to child conditioned on parent.
N N Can be done by consistency on variables
(vertices).

- Does not depend on choice of root.

- May not be consistent between tree and
disconnected sub-forest.

Propagation on trees

Random hypergraphs have no cycles of
size O(log n). Locally like trees.

Each hyperedge e in a tree comes from a
constraint in ®3. Comes with a given
distribution on e (from basic LP).

Propagate to child conditioned on parent.
Can be done by consistency on variables
(vertices).

Does not depend on choice of root.

May not be consistent between tree and
disconnected sub-forest.

Is consistent on a subtree.

Propagation on trees

- Random hypergraphs have no cycles of
size O(log n). Locally like trees.

- Each hyperedge e in a tree comes from a
constraint in ®3. Comes with a given

o distribution on e (from basic LP).
Q/* L 7\' - Propagate to child conditioned on parent.
E A Can be done by consistency on variables
rot vt (vertices).

- Does not depend on choice of root.

- May not be consistent between tree and
disconnected sub-forest.

- |s consistent on a subtree.

Breaking up the graph

- Ildea: Given set S C V, break S
into low-diameter components.
Connect all paths in each
component - always a tree, never a
forest.

Breaking up the graph

- Ildea: Given set S C V, break S
into low-diameter components.
Connect all paths in each
component - always a tree, never a
forest.

- Propagate on each component
tree.

Breaking up the graph

- Ildea: Given set S C V, break S
into low-diameter components.
Connect all paths in each
component - always a tree, never a
forest.

- Propagate on each component
tree.

- If T C S, distribution on
components of T induced by S
should be same as obtained by
partitioning T.

Breaking up the graph

Idea: Given set S C V, break S
into low-diameter components.
Connect all paths in each
component - always a tree, never a
forest.

Propagate on each component
tree.

If T CS, distribution on
components of T induced by S
should be same as obtained by
partitioning T.

Cut only few edges.

Subset consistent partioning schemes

Subset consistent partioning schemes

- [CMM 07]: Define a metric p on
random (hyper)graph H

(p(u,v))? = 1—(1— p)®E)

p embeds in ¢ on small sets S (for
small enough p).

Subset consistent partioning schemes

- [CMM 07]: Define a metric p on
random (hyper)graph H

(p(u,v))? ~ 1—(1— p)d@)

p embeds in ¢ on small sets S (for
small enough p).

- [CCGGP 98]: Low-diameter
decomposition of ¢, embedding.

Subset consistent partioning schemes

- [CMM 07]: Define a metric p on
random (hyper)graph H

(p(u,v))? = 1—(1— p)®E)

p embeds in ¢ on small sets S (for
small enough p).

- [CCGGP 98]: Low-diameter
decomposition of ¢, embedding.

Subset consistent partioning schemes

- [CMM 07]: Define a metric p on
random (hyper)graph H

(p(u,v))? = 1—(1— p)®E)

p embeds in ¢ on small sets S (for
small enough p).

- [CCGGP 98]: Low-diameter
decomposition of ¢, embedding.

Subset consistent partioning schemes

- [CMM 07]: Define a metric p on
random (hyper)graph H

(p(u,v))? = 1—(1— p)®E)

p embeds in ¢ on small sets S (for
small enough p).

- [CCGGP 98]: Low-diameter
decomposition of ¢, embedding.

Subset consistent partioning schemes

- [CMM 07]: Define a metric p on
random (hyper)graph H

(p(u,v))? ~ 1—(1— p)d@)

p embeds in ¢ on small sets S (for
small enough p).

- [CCGGP 98]: Low-diameter
decomposition of ¢, embedding.

- Easy to check partitioning is
consistent on subsets (¢; distances
determine configuration).

The dimensionality problem

- Low-diameter decomposition in RY cuts each edge with probability

O(Vu - d).

The dimensionality problem

- Low-diameter decomposition in RY cuts each edge with probability

O(vp - d).

- For |S| = t, ¢; embedding is in Rf. Probability of cutting an edge is
O(y/i-T). Limits t to O(252).

The dimensionality problem

- Low-diameter decomposition in RY cuts each edge with probability

O(vp - d).

- For |S| = t, ¢; embedding is in Rf. Probability of cutting an edge is
O(y/i-T). Limits t to O(252).

- [JL 84]: Random Gaussian projection in O(log t) dimensions
approximately preserves all distances with high probability.

The dimensionality problem

- Low-diameter decomposition in RY cuts each edge with probability

O(vp - d).

- For |S| = t, ¢; embedding is in Rf. Probability of cutting an edge is
O(y/i-T). Limits t to O(252).

- [JL 84]: Random Gaussian projection in O(log t) dimensions
approximately preserves all distances with high probability.

- For sets S and T, can one consistently discard bad Gaussian
projections?

Open Problems

- Extend the result to n®(1) levels of the SA hierarchy. Will give a size
bound of exp(n®(})) on extended formulation size using [KMR17].

Open Problems

- Extend the result to n®(1) levels of the SA hierarchy. Will give a size
bound of exp(n®(})) on extended formulation size using [KMR17].

- "All-or-nothing” for Sum-of-Squares SDP hierarchy. Would give
strong evidence for the UGC. Even results for specific CSPs would
be interesting (k > 37).

Open Problems

- Extend the result to n®(1) levels of the SA hierarchy. Will give a size
bound of exp(n®(})) on extended formulation size using [KMR17].

- "All-or-nothing” for Sum-of-Squares SDP hierarchy. Would give
strong evidence for the UGC. Even results for specific CSPs would
be interesting (k > 37).

- Can one avoid loss of € in ¢ when ¢ =1 (relevant for refutation)?
Exact refutation addressed by [TZ 16].

Thank You

Questions?

