Stochastic optimization methods for minimizing training error and AUC

Katya Scheinberg,

Joint work with J. Blanchet, C. Cartis, H. Ghanbari and M. Menickelly

STEP FUNCTIONS IN MACHINE LEARNING

Supervised learning problem

• Given a sample data set S of n (input, label) pairs, written

$$S = \{(x_1, y_1), \dots, (x_n, y_n)\}.$$

- each pair is an observation of the random variables (x, y) with some unknown distribution P(x, y) over \mathcal{X}, \mathcal{Y} .
- each pair (x_i, y_i) is an independent sample
- Find a hypothesis (predictor) $p(w, \cdot)$ such that $p(w, x) \approx y$, i.e.,

$$\max_{w} \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}[p(w, x) \approx y] dP(x, y).$$

Binary Classification Objective

Expected risk: ideal objective

$$\max_{w} \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}[yp(w, x) > 0]dP(x, y).$$

$$\min_{w} f_{01}(w) = \mathbb{E}[\ell_{01}(p(w, x), y)]$$

$$\int_{\mathcal{Y}} 0 \quad \text{if } up(w, x) > 0$$

$$\ell_{01}(p(w,x),y) = \begin{cases} 0 & \text{if } yp(w,x) > 0\\ 1 & \text{if } yp(w,x) \le 0, \end{cases}$$

Empirical risk: realizable objective

$$\min_{w} \hat{f}_{01}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell_{01}(p(w, x_i), y_i)$$

Finite, but NP hard problem

Fast Iterative Methods for Optimization, Simons Institute

Logistic Regression Model

Expected logistic loss

$$\min_{w} f(w) = \int_{\mathcal{X} \times \mathcal{Y}} \ell(p(w, x), y) dP(x, y) = \mathbb{E}[\ell(p(w, x), y)],$$
$$\ell(p(w, x), y) = \log(1 + e^{-yp(w, x)}).$$

Empirical logistic loss: realizable objective

$$\min_{w} \hat{f}(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-yp(w,x)})$$

This is a convex function when p(w,x) is linear in w

10/03/17

Classification error – smooth or not?

Given a sample set S

 $S = (X, Y) \sim (\mathcal{X}, \mathcal{Y})$

For a given classifier p(w,x), classification error is computed as

$$Acc(w, X, Y) = \frac{\sum_{i=1}^{n} \mathbb{1}[y_i p(w, x_i) \ge 0]}{n}$$

Classification error – smooth or not?

Given a sample set S

 $S = (X, Y) \sim (\mathcal{X}, \mathcal{Y})$

For a given classifier p(w,x), classification error is computed as

$$Acc(w, X, Y) = \frac{\sum_{i=1}^{n} \mathbb{1}[y_i p(w, x_i) \ge 0]}{n}$$

$$F_{Acc}(w) = \mathbb{E}_{(x,y)}(Acc(w, x, y)) = \mathbb{P}[p(w, x) \ge 0]\mathbb{P}[y = 1] + \mathbb{P}[p(w, x) < 0]\mathbb{P}[y = -1]$$

10/03/17

F_{Acc} for a linear classifier, $p(w,x)=w^T x$

$$F_{Acc}(w) = \mathbb{E}_{(x,y)}(Acc(w,x,y)) = \mathbb{P}[w^T x \ge 0]\mathbb{P}[y=1] + \mathbb{P}[w^T < 0]\mathbb{P}[y=-1]$$

Let positive set $(x|y=1) \sim \mathcal{N}(\mu_p, \Sigma_p)$ and negative set $(x|y=-1) \sim \mathcal{N}(\mu_n, \Sigma_n)$

Given a linear classifier w and a random vector x with label y,

$$F_{Acc}(w) = p(y = -1)\phi(-\mu_{-}/\sigma_{-}) + p(y = 1)\phi(\mu_{+}/\sigma_{+})$$

where
$$\phi(x) = \int_{-\infty}^{x} \frac{e^{-\frac{1}{2}t^{2}}}{\sqrt{2\pi}} dt$$
,

$$\mu_{+} = w^{T} \mu_{p}, \quad \mu_{-} = w^{T} \mu_{n}$$
$$\sigma_{+}^{2} = w^{T} (\Sigma_{pp}) w, \quad \sigma_{-}^{2} = w^{T} (\Sigma_{nn}) w$$

Ghanbari and S, 2017

Fast Iterative Methods for Optimization, Simons Institute

F_{Acc} for linear classifier, $p(w,x)=w^T x$

$$F_{Acc}(w) = \mathbb{E}_{(x,y)}(Acc(w, x, y)) = \mathbb{P}[w^T x \ge 0]\mathbb{P}[y = 1] + \mathbb{P}[w^T < 0]\mathbb{P}[y = -1]$$

Let positive set $(x|y=1) \sim \mathcal{N}(\mu_p, \Sigma_p)$ and negative set $(x|y=-1) \sim \mathcal{N}(\mu_n, \Sigma_n)$

Given a linear classifier w and a random vector x with label y,

$$F_{Acc}(w) = p(y = -1)\phi(-\mu_{-}/\sigma_{-}) + p(y = 1)\phi(\mu_{+}/\sigma_{+})$$

where
$$\phi(x) = \int_{-\infty}^{x} \frac{e^{-\frac{1}{2}t^2}}{\sqrt{2\pi}} dt$$
,

Smooth function in w We can compute gradients

$$\mu_{+} = w^{T} \mu_{p}, \quad \mu_{-} = w^{T} \mu_{n}$$
$$\sigma_{+}^{2} = w^{T} (\Sigma_{pp}) w, \quad \sigma_{-}^{2} = w^{T} (\Sigma_{nn}) w$$

Ghanbari and S, 2017

Fast Iterative Methods for Optimization, Simons Institute

Optimizing accuracy on artificial data using gradient estimates

		initial Accurac	cy	cdf_exact moments	cdf_approx moments	logreg
d = 2		0.065	Accuracy value	0.935	0.935	0.9375
		0.065	sol. Time(sec.)	0.11	0.08	0.06
	d – 5	0.015	Accuracy value	0.9875	0.9875	0.9825
	u – 5	0.015	sol. Time(sec.)	0.2	0.2	0.2
	d - 10	0.0025	Accuracy value	1	1	1
a = 10	u = 10		sol. Time(sec.)	0.2	0.19	0.32
	d = 50	0.0125	Accuracy value	0.99	0.99	0.9725
			sol. Time(sec.)	0.22	0.22	0.57
	d - 100	0 0 0 7 7 7	Accuracy value	0.74	0.7025	0.725
a = 100		0.2725	sol. Time(sec.)	0.27	0.26	0.4
	4 - 200	0.245	Accuracy value	0.8075	0.7475	0.79
	a = 200	0.245	sol. Time(sec.)	0.48	0.49	2.05

N = 1000, Separable means

Optimizing accuracy on real data using gradient estimates

	d	N	accuracy_opt	LogReg_acc	sol time(01)	sol time (Ireg)
Sonar	60	208	0.7329	0.875	0.01	0.22
fourclass	2	862	0.8453	0.8456	0.03	0.05
svm1	4	3089	0.9	0.9	0.06	0.11
magic04	10	19020	0.8914	0.8922	0.06	0.58
diabetes	8	768	0.8812	0.8848	0.06	0.05
german	24	1000	0.8526	0.8836	0.06	0.12
svm3	22	1243	0.8037	0.8156	0.06	0.07
shuttle	9	43500	0.9524	0.9193	0.06	1.24
segment	19	2310	0.9273		0.06	
ijcnn1	22	4691	0.9512	0.9512	0.06	1.5
satimage	36	4435	0.5467	0.9116	0.01	1.02
vowel	10	528	0.97071	0.9821	0.1	0.05
letter	16	5000	0.51835	0.991	0.01	5.45
poker	10	5010	0.5102	0.9897	0.01	3.02

"AUC" OPTIMIZATION

10/03/17

Learning From Imbalanced Data

$$\max_{w} \{ \frac{1}{N} \sum_{i=1}^{N} C_{i} \mathbb{1}(y_{i} w^{T} x_{i} > 0) + \lambda \|w\|^{2} \ w \in \mathbb{R}^{d} \}.$$
$$C_{i} = \begin{cases} C_{p} > 1 & \text{if } y_{i} > 0 \\ C_{n} \leq 1 & \text{otherwise} \end{cases}$$

Fast Iterative Methods for Optimization, Simons Institute

Fast Iterative Methods for Optimization, Simons Institute

How to compute AUC?

Given a positive sample set X_p and a negative sample set X_n

$$X_p \sim \mathcal{X}_p, \ X_n \sim \mathcal{X}_n$$

For a given classifier *p*(*w*,*x*), AUC can be computed as

$$AUC(w, X_p, X_n) = \frac{\sum_{i=1}^{|X_p|} \sum_{j=1}^{|X_n|} \mathbb{1}[p(w, x_i) > p(w, x_j)]}{|X_p| \cdot |X_n|}$$

$$F_{AUC}(w) = \mathbb{E}_{x_p \sim \mathcal{X}_p, x_n \sim \mathcal{X}_n}(AUC(w, x_p, x_n)) = \mathbb{P}[p(w, x_p) > p(w, x_n)]$$

the probability of correct ranking by classifier p(w,x).

10/03/17

F_{AUC} for linear classifier, $p(w,x)=w^T x$

Let random vectors $(x_p, x_n) \sim \mathcal{N}(\mu, \Sigma)$, such that

$$\mu = \begin{bmatrix} \mu_p \\ \mu_n \end{bmatrix}, \text{ and } \Sigma = \begin{bmatrix} \Sigma_{pp} & \Sigma_{pn} \\ \Sigma_{np} & \Sigma_{nn} \end{bmatrix}$$

Given a linear classifier w and random vectors X_p and X_n ,

$$F_{AUC}(w) = P(w^T x_p > w^T x_n) = \phi(\frac{\mu_Z}{\sigma_Z}),$$

where
$$\phi(x) = \int_{\infty}^{x} \frac{e^{-\frac{1}{2}t^2}}{\sqrt{2\pi}} dt$$
,

$$\mu_Z = w^T (\mu_1 - \mu_2),$$

$$\sigma_Z^2 = w^T (\Sigma_{11} + \Sigma_{22} - \Sigma_{12} - \Sigma_{21})w.$$

Ghanbari and S, 2017

Fast Iterative Methods for Optimization, Simons Institute

Optimizing AUC on artificial data using gradient estimates

	N = 1000								
_		initial AUC		cdf_exact moments	cdf_approx moments	hinge			
	d – 2	0 5192	AUC value	0.6337	0.6326	0.6322			
_	u – 2	0.5182	sol. Time(sec.)	0.015	0.02	1.179			
	d – 5	0 570025	AUC value	0.8022	0.802225	0.804025			
a = 5		0.570925	sol. Time(sec.)	0.024	0.012	1.71			
d – 10		0 5242	AUC value	0.785	0.7818	0.784725			
a	u = 10	0.5545	sol. Time(sec.)	0.013	0.023	2.77			
d = 50	d - 50	0.4581	AUC value	0.955575	0.9264	0.9465			
	u = 50		sol. Time(sec.)	0.03	0.029	70.89			
d - 100		0 5 4 0 1	AUC value	0.99925	0.9921	0.9961			
_	u = 100	0.5491	sol. Time(sec.)	0.15	0.18	205.6			
	d - 200	0 57175	AUC value	0.999425	0.997425	0.9992			
	u – 200	0.5/1/5	sol. Time(sec.)	0.65	0.65	379.38			

Optimizing AUC on real data using gradient estimates

	d	N	CDF	Hinge
Sonar	60	208	0.8322	0.849
fourclass	2	862	0.8359	0.8363
svm1	4	3089	0.9526	0.9893
magic04	10	19020	0.8217	0.843
diabetes	8	768	0.8189	0.8308
german	24	1000	0.7848	0.7924
svm3	22	1243	0.705	0.7931
shuttle	9	43500	0.9813	0.9886
segment	19	2310	0.8661	0.9931
ijcnn1	22	4691	0.9244	0.9306
satimage	36	4435	0.7216	0.7695
vowel	10	528	0.9566	0.9755
letter	16	5000	0.9809	0.9866
poker	10	5010	0.5151	0.4735

10/03/17

F_{AUC} for linear classifier, $p(w,x)=w^T x$

Issues with using gradient estimates: we do not know how accurate there are because distribution may not be normal

Solution: optimize F_{AUC} only using function values, which are sufficiently accurate.

Difficulty: derivative free methods do not scale for large dimensions of w.

Reducing parameter space for AUC optimization

Idea: select a different training method (e.g. stochastic gradient for a deep neural network. Select parameters $\lambda \in R^{l}$ that affect output: $w(\lambda)$ Then optimize $F_{AUC}(w(\lambda))$ over λ

Hyperparameter optimization - poorly understood, expect in some cases.

• Given distributions \mathcal{X}_p and \mathcal{X}_n choose parameters C_p, C_n, λ and compute (apprpoximately)

 $w^*(C_p, C_n, \lambda) = \arg\min_{w} \frac{C_p \mathbb{E}_{x \sim \mathcal{X}_p} \log(1 + \exp(-w^T x)) + C_n \mathbb{E}_{x \sim \mathcal{X}_n} \log(1 + \exp(w^T x)) + \lambda \|w\|^2,$

• Optimize over the choice of (C_p, C_n, λ)

 $(C_p^*, C_n^*, \lambda^*) = \arg \max F_{AUC}(w^*(C_p, C_n, \lambda))$

• $F_{AUC}(w^*(C_p, C_n, \lambda))$ may be a smooth function but does not easily admit stochastic derivatives

Optimizing AUC as a black-box

A.1	sonar		fourclass			
Algorithm	AUC	fevals	AUC	fevals		
Pair-wise Hinge	0.849057 ± 0.003061	274	0.836226 ± 0.000923	480		
DFO-TR	$0.840323 {\pm}\ 0.002453$	254	$0.836311 {\pm}\ 0.000921$	254		
Almonithm	svmguide1		magic04	magic04		
Algorithm	AUC	fevals	AUC	fevals		
Pair-wise Hinge	0.989319 ± 0.000008	334	0.843085 ± 0.000208	417		
DFO-TR	$0.989132 {\pm}\ 0.000007$	254	$0.843511{\pm}0.000213$	254		
Almonithm	diabetes		german			
Algorithm	AUC	fevals	AUC	fevals		
Pair-wise Hinge	0.830852 ± 0.001015	348	0.792402 ± 0.000795	421		
DFO-TR	$0.830402{\pm}0.00106$	254	$0.791048 {\pm} 0.000846$	254		
A.1	svmguide3		shuttle			
Algorithm	AUC	fevals	AUC	fevals		
Pair-wise Hinge	0.793116 ± 0.001284	368	0.988625 ± 0.000021	266		
DFO-TR	$0.775246 {\pm}\ 0.002083$	254	$0.987531 {\pm} 0.000035$	254		
Almonithm	segment		ijenn1			
Algorithm	AUC	fevals	AUC	fevals		
Pair-wise Hinge	0.993134 ± 0.000023	753	0.930685 ± 0.000204	413		
DFO-TR	$0.99567 {\pm} 0.00071$	254	$0.910897 {\pm}\ 0.000264$	254		
A. 1	satimage		vowel			
Algorithm	AUC	fevals	AUC	fevals		
Pair-wise Hinge	0.769505 ± 0.000253	763	0.975586 ± 0.000396	348		
DFO-TR	$0.757554 {\pm} 0.000236$	254	$0.973785 {\pm} 0.000506$	254		
Almonithm	letter		poker			
Algorithm	AUC	fevals	AUC	fevals		
Pair-wise Hinge	0.986699 ± 0.000037	517	0.519942 ± 0.001549	553		
DFO-TR	$0.985119{\pm}0.000042$	254	$0.520517 {\pm} 0.001618$	254		

Larger scale examples

a9a	w1a
d=123	d=300
N = 32561	N = 47272
AUC-cdf = 0.8666	AUC-cdf = 0.94
AUC-DFO=0.8991	AUC-DFO=0.9346
AUC-cdf-DFO=0.8997	AUC-cdf-DFO=0.9558
AUC-logreg = 0.902774	AUC-logreg=0.96

10/03/17

DFO vs. Bayesian optimization on AUC

www.automl.org/hpolib

Tuble 5. Comparing 51 0 TR 18. BO information.										
Data	num.	DFO-TR		TPE	TPE		SMAC		SPEARMINT	
Data	fevals	AUC	time	AUC	time	AUC	time	AUC	time	
fourclass	100	0.835±0.019	0.31	0.839±0.021	12	0.839 ± 0.021	77	0.838 ± 0.020	5229	
svmguide1	100	0.988 ± 0.004	0.71	0.984 ± 0.009	13	0.986 ± 0.006	72	0.987±0.006	6435	
diabetes	100	0.829 ± 0.041	0.58	0.824 ± 0.044	15	0.825 ± 0.045	75	0.829±0.060	8142	
shuttle	100	0.990 ± 0.001	43.4	0.990 ± 0.001	17	0.989 ± 0.001	76	0.990±0.001	13654	
vowel	100	0.975 ± 0.027	0.68	0.965 ± 0.029	16	0.965 ± 0.038	77	0.968±0.025	9101	
magic04	100	0.842 ± 0.006	10.9	0.824 ± 0.009	16	0.821 ± 0.012	76	0.839±0.006	7947	
letter	200	0.987 ± 0.003	10.2	0.959 ± 0.008	49	0.953 ± 0.022	166	0.985±0.004	21413	
segment	300	0.992 ± 0.007	9.1	0.962 ± 0.021	99	0.997±0.004	263	0.976 ± 0.021	216217	
ijcnn1	300	0.913 ± 0.005	57.3	0.677 ± 0.015	109	0.805 ± 0.031	268	0.922±0.004	259213	
svmguide3	300	0.776 ± 0.046	13.5	0.747 ± 0.026	114	0.798±0.035	307	0.7440 ± 0.072	185337	
german	300	0.795 ± 0.024	9.9	0.771 ± 0.022	120	0.778 ± 0.025	310	0.805±0.020	242921	
satimage	300	0.757±0.013	14.2	0.756 ± 0.020	164	0.750 ± 0.011	341	0.761±0.028	345398	

DFO vs. random search, optimizing AUC Jamieson and Talwalkar

Table 6.	Comparing	DFO-TR	vs.	random	search	algorithm.
----------	-----------	--------	-----	--------	--------	------------

Dete	DFO-TR		Random	Search	Random Search		
Data	AUC	num. fevals	AUC	num. fevals	AUC	num. fevals	
fourclass	0.835 ± 0.019	100	0.836 ± 0.017	100	0.839 ± 0.021	200	
svmguide1	0.988 ± 0.004	100	0.965 ± 0.024	100	0.977 ± 0.009	200	
diabetes	0.829 ± 0.041	100	0.783 ± 0.038	100	0.801 ± 0.045	200	
shuttle	0.990 ± 0.001	100	0.982 ± 0.006	100	0.988 ± 0.001	200	
vowel	0.975 ± 0.027	100	0.944 ± 0.040	100	0.961 ± 0.031	200	
magic04	0.842 ± 0.006	100	0.815 ± 0.009	100	0.817 ± 0.011	200	
letter	0.987 ± 0.003	200	0.920 ± 0.026	200	0.925 ± 0.018	400	
segment	0.992 ± 0.007	300	0.903 ± 0.041	300	0.908 ± 0.036	600	
ijcnn1	0.913 ± 0.005	300	0.618 ± 0.010	300	0.629 ± 0.013	600	
svmguide3	0.776 ± 0.046	300	0.690 ± 0.038	300	0.693 ± 0.039	600	
german	0.795 ± 0.024	300	0.726 ± 0.028	300	0.739 ± 0.021	600	
satimage	0.757 ± 0.013	300	0.743 ± 0.029	300	0.750 ± 0.020	600	

STOCHASTIC TRUST REGION METHODS

10/03/17

Stochastic optimization

Unconstrained optimization problem

 $\min_w F(w)$

- Function $F \in C^1$ or C^2 and bounded from below.
- F(w) may not be computable, instead $\hat{F}(w) = F(w, \varepsilon), \ G(w) = \nabla F(w, \varepsilon), \ H(w) = \nabla^2 F(w, \varepsilon)$

where ϵ is a random variable

• We do not assume unbiased estimators $E_{\epsilon}[F(w,\epsilon)]=F(w),$ $E_{\epsilon}[\nabla F(w,\epsilon)]=\nabla F(w)$ $E_{\epsilon}[\nabla^{2}F(w,\epsilon)]=\nabla^{2}F(w)$

Deterministic trust region method

Algorithm 1 Trust region method

Parameters: $\gamma > 1$, $\eta_1 \in (0, 1)$, $\eta_2 > 1$ Initialize: w_0 , trust region radius Δ_0 . Iterate: for k = 1, 2, ... do Generate a model $m_k(w_k + s) = F(w_k) + G_k^{\top}s + \frac{1}{2}s^{\top}H_ks$ $s_k = \arg \min_{s:||s|| \le \Delta_k} m_k(s)$ (approximately) Compute $\rho_k = \frac{F(w_k) - F(w_k + s_k)}{m_k(w_k) - m_k(w_k + s_k)}$. If $\rho_k \ge \eta_1$ set $w_{k+1} = w_k + s_k$ and $\Delta_{k+1} = \gamma \Delta_k$; Else, set $w_{k+1} = w_k$, and set $\Delta_{k+1} = \gamma^{-1} \Delta_k$; end for

> Conn Gould Toint, 2000 Conn, S, Vicente 2009

Model assumptions for trust region method

$$m_k(w_k + s) = F_k + G_k^{\top}s + \frac{1}{2}s^{\top}H_ks$$

Fully linear model

$$|F_k - F(w_k)| \le \kappa \Delta_k^2$$
$$||G_k - \nabla F(w_k)|| \le \kappa \Delta_k$$
$$||H_k - \nabla^2 F(w_k)|| \le \kappa$$

$$\begin{aligned} |F_k - F(w_k)| &\leq \kappa \Delta_k^3 \end{aligned}$$

Fully quadratic model $\|G_k - \nabla F(w_k)\| &\leq \kappa \Delta_k^2 \\ \|H_k - \nabla^2 F(w_k)\| &\leq \kappa \Delta_k \end{aligned}$

Trust-region methods converge and achieve 1) $||\nabla F(w_k)|| \le \epsilon$ at the rate of $1/\epsilon^2$ 2) $Min\{\lambda_{min} (\nabla^2 F(w_k)), ||\nabla F(w_k)||\} \le \epsilon$ at the rate of $1/\epsilon^3$

Stochastic trust region method

Algorithm 1 Trust region method

Parameters: $\gamma > 1, \eta_1 \in (0, 1), \eta_2 > 1$ **Initialize:** w_0 , trust region radius Δ_0 . **Iterate:** for k = 1, 2, ... do Generate a random model $m_k(w_k + s) = F_k + G_k^{\top}s + \frac{1}{2}s^{\top}H_ks$ $s_k = \arg \min_{s:||s|| \le \Delta_k} m_k(s)$ (approximately) Compute $\rho_k = \frac{\hat{F}_k - \hat{F}_k^+}{m_k(w_k) - m_k(w_k + s_k)}.$ where $\hat{F}_k \approx F(w_k)$ and $\hat{F}_k^+ \approx F(w_k + s_k)$ If $\rho_k \geq \eta_1$ and $||G_k|| \geq \eta_2 \Delta_k$ set $w_{k+1} = w_k + s_k$ and $\Delta_{k+1} = \gamma \Delta_k$; Else, set $w_{k+1} = w_k$, and set $\Delta_{k+1} = \gamma^{-1} \Delta_k$; end for

> Chen, Menickelly, S, 2015 Blanchet, Cartis, Menickelly, S, 2017

10/03/17

Convergence rates

For nonconvex F(w), for first order convergence, we aim to achieve

10/03/17

Convergence rate for our methods

For nonconvex F(w), for first order convergence, we aim to achieve

 $T_{\epsilon} = \inf\{k \ge 0 : \|\nabla F(w_k)\| \le \epsilon\}.$

 $\|\nabla F(w_k)\| \le \epsilon$

Bound it in expectation

 $\mathbf{E}[T_{\epsilon}] \le O(\frac{1}{\epsilon^2})$

10/03/17

Stochastic trust region method

$$m_{k}(w_{k}+s) = F_{k} + G_{k}^{\top}s + \frac{1}{2}s^{\top}H_{k}s$$
$$|F_{k} - F(w_{k})| \leq \kappa\Delta_{k}^{2}$$
$$||G_{k} - \nabla F(w_{k})|| \leq \kappa\Delta_{k}$$
$$||H_{k} - \nabla^{2}F(w_{k})|| \leq \kappa$$
$$w.p. p$$
suff. large

Trust-region method converges and achieves $||\nabla F(w_k)||^2 \le \epsilon$ at the rate of $1/\epsilon$ Chen, Menickelly, S. 2016, Blanchet, Cartis, Menickelly, S, 2017,

Fast Iterative Methods for Optimization, Simons Institute

Stochastic second order TR method

Random second order model

$$m_{k}(w_{k}+s) = F_{k} + G_{k}^{\top}s + \frac{1}{2}s^{\top}H_{k}s$$
$$|F_{k} - F(w_{k})| \leq \kappa\Delta_{k}^{3}$$
$$|G_{k} - \nabla F(w_{k})|| \leq \kappa\Delta_{k}^{2}$$
$$|H_{k} - \nabla^{2}F(w_{k})|| \leq \kappa\Delta_{k}$$
$$|\mathbb{E}[F_{k}] - F(w_{k})| \leq \kappa\Delta_{k}^{3}$$

Trust-region method converges and achieves $Min\{\lambda_{min} (\nabla^2 F(w_k)), ||\nabla F(w_k)||\} \le \epsilon$ at the rate of $1/\epsilon^3$ Cartis, S. 2017

Fast Iterative Methods for Optimization, Simons Institute

Employing sample average
approximation with
$$S_k$$
 dependent on Δ_k For function accuracy $F_k = \frac{1}{S_k} \sum_{i \in S_k} F_i(w^k) \quad |S_k| = O\left(\frac{V_F}{\Delta_k^4}\right)$ For gradient accuracy $G_k = \frac{1}{S_k} \sum_{i \in S_k} \nabla F_i(w^k) \quad |S_k| = O\left(\frac{V_G}{\Delta_k^2}\right)$

Employing sample average
approximation with
$$S_k$$
 dependent on Δ_k
For function accuracy $F_k = \frac{1}{S_k} \sum_{i \in S_k} F_i(w^k) \quad |S_k| = O\left(\frac{V_F}{\Delta_k^6}\right)$
For gradient accuracy $G_k = \frac{1}{S_k} \sum_{i \in S_k} \nabla F_i(w^k) \quad |S_k| = O\left(\frac{V_G}{\Delta_k^4}\right)$
For Hessian accuracy $H_k = \frac{1}{S_k} \sum_{i \in S_k} \nabla^2 F_i(w^k) \quad |S_k| = O\left(\frac{V_H}{\Delta_k^2}\right)$

Fast Iterative Methods for Optimization, Simons Institute

Conclusions

- Optimizing accuracy and AUC directly is possible.
- If underlining expected values functions are smooth, then convergent methods exist.
- Scaling DFO methods up will be useful.
- Studying/engineering data distributions may lead to new efficient methods.

Thank you!

10/03/17