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Supervised learning problem 
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Binary Classification Objective 
Expected risk: ideal objective  

Empirical risk: realizable objective  

Finite, but NP hard problem 
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Logistic Regression Model 
Expected logistic loss  

Empirical logistic loss: realizable objective  

This is a convex function when p(w,x) is linear in w   
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Classification error – smooth or not? 

Given a sample set S 
 
 
For a given classifier p(w,x),  classification error is computed as  
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FAcc for a linear classifier, p(w,x)=wTx 
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Smooth function in w 
We can compute gradients 



Optimizing accuracy on artificial data 
using gradient estimates  
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Optimizing accuracy on real data using 
gradient estimates  
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“AUC” OPTIMIZATION  
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Learning From Imbalanced Data 
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AUC – area under the curve 
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How to compute AUC? 

Given a positive sample set Xp and a negative sample set Xn 
 
 
For a given classifier p(w,x), AUC can be computed as  
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 the probability of correct ranking by classifier p(w,x). 



FAUC for linear classifier, p(w,x)=wTx 
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Optimizing AUC on artificial data using 
gradient estimates  
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Optimizing AUC on real data using 
gradient estimates  

10/03/17 Fast Iterative Methods for Optimization, Simons 
Institute 



FAUC for linear classifier, p(w,x)=wTx 
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Issues with using gradient estimates: we do not know how accurate 
there are because distribution may not be normal 
 
Solution: optimize FAUC only using function values, which are sufficiently 
accurate.   
 
Difficulty: derivative free methods do not scale for large dimensions of w.  
 
 



 
Reducing parameter space for AUC optimization 
  

Fast Iterative Methods for Optimization, Simons 
Institute 

10/03/17 

Idea: select a different training method (e.g. stochastic gradient for a 
deep neural network. Select  parameters ¸ 2 Rl  that affect output: w(¸) 
Then optimize  FAUC(w(¸)) over ¸ 

Hyperparameter optimization  - poorly understood, expect in some cases. 



Optimizing AUC as a black-box 
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Larger scale examples 
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DFO vs. Bayesian optimization on AUC 
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DFO vs. random search, optimizing AUC 
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DFO vs. BO optimizing SVM hyperparameters 
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STOCHASTIC TRUST 
REGION METHODS 
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Stochastic optimization  
l  Unconstrained optimization problem 
 
l  Function F2C1 or C2  and bounded from below. 
l  F(w) may not  be computable, instead 
 
    where ² is a random variable 
l  We do not assume  unbiased estimators 

    E²[F(w,²)]=F(w),  
    E²[rF(w,²)]=rF(w)  
    E²[r2F (w,²)]=r2F(w) 
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Deterministic trust region method   

Conn Gould Toint, 2000 
Conn, S, Vicente 2009  
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Examples of models and TR steps 
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Model assumptions for trust region method 

Trust-region methods converge and achieve 
1) ||r F(wk)||· ² at the rate of 1/²2  

2) Min{¸min (r2F(wk)), ||r F(wk)||}· ²  at the rate of 1/²3 
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Fully linear model 

Fully quadratic model 



Stochastic trust region method   

Chen, Menickelly, S, 2015 
Blanchet, Cartis, Menickelly, S, 2017  
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Convergence rates 
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For nonconvex F(w), for first order convergence,  we  aim to achieve 
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Convergence rate for our methods 
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For nonconvex F(w), for first order convergence,  we  aim to achieve 

Define a stopping time T² 
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Bound it in expectation 



Stochastic trust region method 
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Trust-region method converges and achieves 
||r F(wk)||2· ² at the rate of 1/² 
Chen, Menickelly, S.  2016, 
Blanchet, Cartis, Menickelly, S, 2017, 
 
 
 
 

w.p. p 
suff. large 
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Stochastic second order TR method 
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Random second order model  

Trust-region method converges  and achieves 
Min{¸min (r2F(wk)), ||r F(wk)||}· ²  at the rate of 1/²3 

Cartis, S. 2017 
 

w.p. p>0 
suff. large 
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Employing sample average 
approximation with Sk dependent on ¢k 
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Stochastic vs. deterministic TR method 
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Conclusions 

l  Optimizing accuracy and AUC directly is possible.  
l  If underlining expected values functions are smooth, 

then convergent methods exist. 
l  Scaling DFO methods up will be useful.  
l  Studying/engineering data distributions may lead to new 

efficient methods.  
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Thank you! 
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