
Dealing with Constraints via Random
Permutation

Ruoyu Sun
UIUC

Joint work with Zhi-Quan Luo (U of Minnesota and CUHK (SZ)) and
Yinyu Ye (Stanford)

Simons Institute Workshop on “Fast Iterative Methods in Optimization”

October 3, 2017



Motivation



Optimization for Large-scale Problems

• How to solve large-scale constrained problems?

• Popular idea: solve small subproblems
• CD (Coordinate Descent)-type: min f (x1, . . . , xN).

x1 → x2 → · · · → xN

• SGD (Stochastic Gradient Descent): min
∑

i fi(x).
f1 → f2 → · · · → fN

• Widely (and wildly) used in practice: deep learning, glmnet for
LASSO, libsvm for SVM, recommendation systems, EM

• Compared to other ideas, e.g., first-order methods and
sketching:
• Similar cheap iteration idea

• “Orthogonal” to other ideas, so can combine
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Go Beyond Unconstrained Optimization

• Many problems have (linear) constraints

• Classical convex optimization, e.g., linear programming.

• Combinatorial optimization (this workshop)

• Operations research problems

• Machine learning applications, e.g., structured sparsity and deep
learning

• Can we apply the decomposition idea? Turn out to be tricky!

• Algorithm: CD + multiplier −→ ADMM (Alternating Direction
Method of Multipliers)
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Multi-block ADMM

• Consider a linearly constrained problem

min
x∈RN

f (x1, x2, . . . , xn)

s.t. Ax , A1x1 + · · ·+ Anxn = b,

xj ∈ Xj ⊆ Rdj , j = 1, . . . ,n.

(1)

• Augmented Lagrangian function:

Lγ(x1, . . . , xn;λ) = f (x)− 〈λ,
∑

i

Aixi − b〉+ γ

2
‖
∑

i

Aixi − b‖2.

• Multi-block ADMM (primal CD, dual ascent)

x1 ←− arg minx1∈X1 Lγ(x1, . . . , xn;λ),
...

xn ←− arg minxn∈Xn Lγ(x1, . . . , xn;λ),

λ←− λ− γ(Ax − b),

(2)
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Divergence of 3-block ADMM

• 2-block ADMM converges [Glowinski-Marroco-1975],

[Gabay-Mercier-1976].

• 3-block ADMM may diverge [Chen-He-Ye-Yuan-13].

• Example: solve 3× 3 linear system

min
x1,x2,x3

0,

s.t.

1 1 1
1 1 2
1 2 2


x1

x2

x3

 = 0,
(3)
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Random Permutation Helps

• RP-ADMM: Randomly permute update order
(312), (123), (213), . . .

• New outlet?
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Background



Two-block ADMM

• ADMM usually refers to 2-block ADMM
[Glowinski-Marroco-75], [Gabay-Mercier-76],

[Boyd-Parikh-Chu-Peleato-Eckstein-11] (5800 citations)

min
x ,y

f (x) + g(y)

s.t. Ax + By = c.
(4)

• Augmented Lagrangian function:

L(x , y ;λ) = f (x)+g(y)−〈λ,Ax+By−c〉+γ
2
‖Ax + By − c‖2.

• Two-block ADMM:
x ←− arg minx L(x , y ;λ),

y ←− arg miny L(x , y ;λ),

λ←− λ− γ(Ax + By − c).

(5)
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Variants of multi-block ADMM

• Multi-block cyclic ADMM may diverge

• Question: How to make multi-block ADMM converge?

• Approach 1: Change algorithm.
• Gaussian substitution [He-Tao-Yuan-11] .

• Approach 2: Change algorithm + problem.

• Strong convexity + small stepsize γ = O(σ/N) [Han-Yuan-12] .

• And many other related works [Deng-Lai-Peng-Yin-13], [Lin-Ma-Zhang-14],

[Lin-Ma-Zhang-15], [Sun-Toh-Yang-14], [Li-Sun-Toh-15] ,etc.

• What is a minimal modification + stepsize 1?
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Apply Randomization Trick to ADMM

• We know:
1) ADMM may diverge;
2) Randomization helps CD/SGD [Strohmer-Vershynin-08],

[Leventhal-Lewis-10], [Nesterov-11], [Roux et al-12], [Blatt et al-07]

• First idea: (independently) randomized ADMM
(x3x1x1λ), (x1x3x2λ), . . .

• Bad news: can diverge!
• Diverge for Gaussian data
• Converge for the counter-example in [Chen-He-Ye-Yuan-13]

• Second idea: random permutation
(x3x1x2λ), (x2x1x3λ), . . . .
It always converges in the simulation.
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Summarize ADMM Variants

• Cyclic: (x1x2x3λ), (x1x2x3λ), . . . .

• Random permutation (RP): (x3x1x2λ), (x2x1x3λ), . . .

• Independently random (IR): (x3x1x1λ), (x2x1x2λ), . . .

• Simulation: RP always converges, other two can diverge.

RP > IR, Cyclic.

• Wait...practitioners may not care? (divergence
of cyclic ADMM is just worst-case?)
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Numerical Experiments: Cyc-ADMM Often Diverges

Table 1: Solve Linear Systems by Cyc-ADMM, RP-ADMM and GD

N Diverg. Ratio for Cyc-ADMM
Iterations for ε = 0.001

CycADMMi RPADMM GD

Gaussian N(0, 1)
3 0.7% 3.2e01 8.8e01 1.4e02

100 3% 1.0e03 7.4e03 6.5e03

Uniform [0, 1]

3 3.2% 7.0e01 2.6e02 6.0e02
100 100% N/A 1.4e04 9.7e04

• Cyc-ADMM can diverge often; sometimes diverges w.p. 100%.
• In fact, easy to diverge if off-diagonal entries are large.

Cyc-ADMM is somewhat similar to Cyc-BCD.

• RP-ADMM converges faster than GD.
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Remarks on Divergence of Cyclic ADMM

• Cyclic ADMM may diverge: a “robust” claim.

• Not worst-case example; happen often.

• Stepsize does not help (at least constant).

• Strong convexity does not help (at least for stepsize 1).

• Order (123) fails; maybe (231) works?

• Fact: Any fixed order diverges.
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Summary: Why We Want to Understand RP-ADMM

Theoretical Curiosity + Practical Need.

• First, decomposition idea can be useful for solving
constrained problems

• cyclic ADMM may not converge.

• RP-ADMM: a simple solution

• Second, help understand RP-rule, e.g. RP-CD, RP-SGD.

• Many people write IR papers.

• Many people run RP experiments (default choice in deep
learning package e.g. Torch)
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Convergence Analysis of RP-
ADMM



Solve Linear System

• Solve a square linear system of equations (fi = 0, ∀i).

min
x∈RN

0,

s.t. A1x1 + · · ·+ Anxn = b,
(6)

where A = [A1, . . . ,An] ∈ RN×N is full-rank, xi ∈ Rdi and∑
i di = N.

• Why linear system?

• Basic constrained problem

• Already difficult to analyze.
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Main results

Theorem 1ii

The expected output of RP-ADMM converges to the solution of
(6), i.e.

{Eξk (y
k )}k→∞ −→ y∗. (7)

Remark: Expected convergence 6= convergence, but is a
strong evidence for convergence.

Denote M as the expected iteration matrix of RP-ADMM.

Theorem 2

ρ(M) < 1, i.e. spectral radius of M is less than 1.
iiS, Luo, Yinyu Ye, “On the Expected Convergence of Randomly Permuted ADMM”,
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Why Spectral Analysis?

Meta-proof-frameworks in optimization don’t work (or I don’t know
how).

Potential function.
• E.g. GD, C-CD or R-CD for minxxT Ax , the potential function is

the (expected) objective.

• Our system: E(yk+1) = ME(yk ), but ‖M‖ > 2.3 for the
counterexample. yT My is not a potential function.

• There exists P such that P −MT PM is PSD, and yT Py is a
potential function. Hard to compute P.

Contraction: can prove convergence of 2-block ADMM.
• Again, how to distinguish between cyclic ADMM and PR-ADMM?

• Not a big surprise. 2-block is very special.
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Switched Linear System

RP-ADMM can be viewed as switched linear systems:

yk+1 = Mk yk ,

where Mk ∈ {B1, . . . ,Bm}. For RP-ADMM, m = n!.

Our problem: each single Bi is not stable (corresponding to a single
order), but randomly picking from {B1, . . . ,Bm} makes the system
stable.

Related to product of random matrices [Furstenberg-Kesten-60]; but
hard to apply to our case.

A useful first step is to find a convex combination of Bi ’s that is stable
[Wicks et al.-94]

18



Theorem 2: a Pure Linear Algebra Problem

• Define matrix Lσ by deleting half off-diagonal entries of AT A

Lσ[σ(i), σ(j)] ,

{
AT
σ(i)Aσ(j) j ≤ i ,

0 j > i ,
(8)

• Example:

L(231) =

1 AT
1 A2 AT

1 A3

0 1 0
0 AT

3 A2 1

 .

• Define Q = E(L−1
σ ). Compare: E(Lσ) = 1

2 (I + AT A).

• Theorem 2 claims ρ(M) < 1, with M being a function of A:

M =

[
I −QAT A QAT

−A + AQAT A I − AQAT

]
. (9)
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Two Main Lemmas to Prove Theorem 2: Lemma 1

• Step 1: Relate M to a symmetric matrix AQAT .

Lemma 1

λ ∈ eig(M)⇐⇒ (1− λ)2

1− 2λ
∈ eig(AQAT ). (10)

When Q is symmetric, we have

ρ(M) < 1⇐⇒ eig(AQAT ) ⊆ (0,
4
3
). (11)

• This lemma treats Q as a black box.
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Lemma 2

• Step 2: Bound eigenvalues of AQAT .

Lemma 2

For any non-singular A, let Q = E(L−1
σ ) where Lσ is given by (8),

then
eig(AQAT ) ⊆ (0,

4
3
). (12)

• Remark: 4/3 should be tight: we find examples > 1.33.
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What is AQAT

• AQAT relates to RP-CD (quadratic): x ←− (I −QAT A)x .

• RP-CD converges⇐⇒ eig(AQAT ) ∈ (0,2).

• RP-ADMM converges⇐⇒ eig(AQAT ) ∈ (0,4/3).

• Cyc-CD (quadratic): x ←− (I − L−1
12...nAT A)x

• Cyc-CD converges⇐⇒ eig(AL−1
12...nAT ) ∈ (0,2).

• Remark: spectrum of RP-CD is “nicer” than Cyc-CD.

• “Pre-assigned” space for RP-ADMM.
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Proof Sketch of Lemma 2

• Step 2.1: Symmetrization =⇒ induction formula of
Q = E(L−1

σ ).

• Step 2.2: Induction inequality of ρ = ρ(QAT A):

ρ ≤ P(ρ̂, ρ) , max
θ≥0

ρ̂+ θ

(
ρ

4ρ− 4 + θ
− 1
)
, (13)

where ρ̂ is the (n − 1)-block analog of ρ(QAT A).

• Remark: ρ = 4/3 is the fixed point of ρ = P(ρ, ρ) .
• P( 4

3 ,
4
3 ) =

4
3 + maxθ≥0 θ(

ρ
ρ+θ − 1) = 4

3 −maxθ≥0
θ2

ρ+θ = 4
3 .
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Variants of ADMM



Interesting Byproduct: New Randomization Rule

• Finding: 2-level symmetrization is enough.

• New algorithm: Bernolli randomization (BR).

• Phase 1: sweep 1, . . . ,n; for each block, update w.p. 1/2;

• Phase 2: sweep n, . . . ,1; if previously not updated, now
update.

• Examples of valid order: ( 2, 3; 4, 1 ), ( 1, 2, 4; 3 ).
Non-examples: (3,4,1,2)

• Proposition: BR-ADMM converges in expectation.
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Another Way to Apply Decomposition to Constraints

The problem is still minx f (x), s.t. Ax = b.

Original ADMM: each cycle is (x1, x2, x3, λ).

Primal-dual ADMM: each cycle is (x1, λ, x2, λ, x3, λ).

• Cyclic version still can diverge for the counter-example.

• Randomized version was proven to converge with high
probability (e.g. [Xu-2017])

However, in simulation, randomized PD-ADMM is much slower
than other versions (next page).
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Comparison of Algorithms

Uniform [0,1] data:

• cyclic ADMM and primal-dual version of Bernolli
randomization fail to converge.
• PD-rand-ADMM is much slower than others.
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Comparison of Algorithms (cont’d)

Standard Gaussian data:

• PD-rand-ADMM is significantly slower than all other
methods.
• Recall: randomized ADMM is the only method that

diverges!

Strange issue: (independent) random rule is bad for Gaussian
data.
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Comparison of Algorithms (cont’d)

Simple summary of different methods (no stepsize tuning):

Update Order Original Version Primal-Dual Version
cyclic Diverge Diverge
indep. random Diverge Converge but very slow
Bernolli random Converge Diverge
random permutation Converge iii Converge? iv

Observation: random permutation is a universal “stabilizer”.

Open question: Any convergence analysis of P-D version of
RP-ADMM?
iiiOnly expected convergence for simple problems are proved.
ivBased on extensive simulation
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Convergence Rate: Related Result
and Discussion



Convergence Rate of Cyclic CD

• Status: many results on (independently) random rule; little
understanding of RP/cyclic/whatever rule
• A few works [Recht-Re-12],

[Gurbuzbalaban-Ozdaglar-Parrilo-15], [Wright-Lee-17] studied
random permutation, but why RP is better than IR in
general is still unknown

• Mark Schmidt talked about Gauss-Southwell rule this
morning.

• Classical literature says: they are “essentially cyclic” rule,
all converge for CD

• However, their convergence speed can be quite different
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Convergence Rate of Cyclic CD

• Question: “true” convergence rate of cyclic CD or Gauss-Seidal
method (Gauss 1823, Seidel 1874)?

• Why care cyclic order?
• Understanding “non-independently-randomized” rule

• Almost all convergence rate results on cyclic rule
immediately apply to RP-rule

• Randomization not available sometimes

• Puzzle: known rates can be sometimes n2 times worse than
R-CD for quadratic case [Beck-Tetruashvili-13], [Sun-Hong-15]

• Some claim cyclic order must be bad; an example given by
Strohmer and Richtarik (independently) showed this.
• Only O(n) gap between C-CD and R-CD;
• Only fails for some particular orders. Randomly pick order

and fix, then becomes fast. 30



Rate of Cyclic CD

• Answer v: up to n2 times worse than R-CD, for equal-diagonal
quadratic case.

Table 2: Complexity for equal-diagonal case (divided by
n2κ log 1

ε and ignoring constants. τ = λmax/λavg ∈ [1,n] )

C-CD GD R-CD SVRG
Lower bound τ 1 1

τ
1
τ

Upper bound min{τ log2 n,n} 1 1
τ

1
τ

• Lower bound is based on analyzing one example. Steven Wright
mentioned the example in two talks starting from 2015 summer.
We independently discover the example.

• Analysis: tricky issue on non-symmetric matrix update. (even
more tricky than ADMM case)

vSun, Ye, “Worst-case Convergence Rate of Cyclic Coordinate Descent Method:
O(n2) Gap with Randomized Versions”, 2016.
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Relation to Other Methods

• Same gap exists for Kaczmarz method and POCS (Projection
onto Convex Sets).

• POCS, dating back to Von Neumann in 1930’s, has been studied
extensively. See a survey [Bauschke-Borwein-Lewis-1997]

• Convergence rate given by Smith, Solmon and Wagner in 1977.
Still in textbook.

• Translate to CD: a rate dependent on all eigenvalues.

• Turn out to be∞-times worse than our bound for the
example.

• Always worse than our bound (up to O(log2 n) factor)
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Convergence Speed of RP-CD and AM-GM inequality

Random permutation was studied in [Recht-Re’2012], mainly
for RP-SGD.

Conjecture: Matrix AM-GM inequality ([Recht-Re’2012])

Suppose A1, . . . ,An � 0, then

‖ 1
n!

∑
σ is a permutation

Aσ1 . . .Aσn‖ ≤ ‖
1
n
(A1 + · · ·+ An)‖n.

If this inequality holds, then the convergence rate of RP-CD for
quadratic problems is faster than R-CD.

Zhang gave a proof for n = 3; Duchi gave a proof for a variant,
again for n = 3.
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Another variant of matrix AM-GM inequality

Conjeture (variant of matrix AM-GM inequality): If Pi is a projection
matrix, i = 1, . . . ,n, then

1
n!

∑
σ is a permutation

Pσ1 . . .Pσn �
1
n
(P1 + · · ·+ Pn). (14)

Claim: If matrix AM-GM inequality (14) holds, then combining with
our result eig(QAT A) ∈ (0,4/3), RP-CD has better convergence rate
than that of R-CD for convex quadratic problems.

We know eig(I −QAT A) = eig(MRP−CD) ∈ (−1,1).

• Our result is about the left end by improving −1 to −1/3.

• Matrix AM-GM inequality (14) is about the right end near 1

We have some results on the expected convergence rate of RP-CD
and RP-ADMM. Skip here.
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Summary

• Main result: convergence analysis of RP-ADMM.

• Implication 1 (problem): solver for constrained problems.

• Implication 2 (algorithm): RP better.
Even much better than independently randomized rule.

• Implication for RP-CD: “truncate” one side spectrum.

• Tight analysis of “non-independent-randomization”: worst-case
understanding of cyclic order, but more works are needed.

• Lots of open questions:
• convergence of PD version of RP-ADMM
• AM-GM inequality
• Jacobi preconditioning
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Thank You!
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