
1

Zero-Order Methods for the Optimization
of Noisy Functions

Jorge Nocedal
Northwestern University

Simons Institute, October 2017

2

Collaborators

 Albert Berahas Richard Byrd
 Northwestern University University of Colorado

3

Motivation

1.  Scalability
2.  Parallelism
3.  Beyond linear models
4.  But should not aim for fully quadratic model
5.  Spread function evaluations effectively

1.  Use noise estimation techniques (Hamming 1960s)
2.  Estimate good finite-difference interval h
3.  Classical quasi-Newton updating using finite-difference gradients
4.  Deal with noise adaptively
5.  Can solve problems with thousands of variables
6.  Convergence to a neighborhood of solution

Problem 1: min f (x) f smooth but derivatives not available

Problem 2: min f (x;ξ) f (⋅;ξ) smooth

4

Nonsmooth Optimization Lewis and Overton

BFGS method with the right line search is more
effective in practice than bundle methods or any other
approach they tried (Curtis)

The Wolfe line search ensures that a convex model can
be created. Only assume function is bounded below

Gradient exists almost everywhere:

f (xk +αd) ≤ f (xk)+αc1∇f (xk)T d Armijo

∇f (xk +αd)T d ≥ c2∇f (xk)T d Wolfe

0 < c1 < c2 <1

xk+1 = xk −α kHk∇f (xk)

f (x) =| x |

5

Nonsmooth Optimization Lewis and Overton:

The BFGS matrix captures the U-V structure of
the objective

Hessian approximation blows up (good thing)

Never observed failures
Very limited convergence results
Where do we go from here?

 Power of Armijo-Wolfe line search not appreciated by the convex

analysis community
Rather than constructing a majorizing function, one constructs a
convex model along the search direction

xk+1 = xk −α kHk∇f (xk)

6

Discussion

1.  The BFGS method continues to surprise
2.  One of the leading algorithms for nonsmooth optimization
3.  Leading approach for (deterministic) derivative-free optimization
4.  This talk: Leading method for the minimization of noisy functions

These observations do not apply to:
1.  Structured nonsmooth optimization (e.g. lasso)
2.  Stochastic objectives with cheap gradient, as in machine learning
3.  Nonlinear least squares objectives; Gauss-Newton is the right approach

We had not fully recognized the power and generality of quasi-Newton
updating

7

Derivative free deterministic optimization (no noise)

•  Interpolation based models with trust regions (Katya)

min f (x) f is smooth

1.  Need (n+1)(n+2)/2 function values to define quadratic model by pure
interpolation

2.  Can use n points and assume minimum norm change in the Hessian
3.  Arithmetic costs high: n4

4.  Placement of interpolation points is important
5.  Trust region constraint needed – and natural
6.  Parallelizable?

 min m(x) = xT Bx + gT x s.t. ‖x‖2≤ Δ

8

BFGS with finite difference gradients: deterministic case

•  Invest significant effort in estimation of gradient
•  Delegate construction of model to BFGS
•  Interpolating gradients
•  Modest linear algebra costs O(n)
•  Placement of sample points on an orthogonal set
•  BFGS is an overwriting process: no inconsistencies or ill conditioning

with Armijo-Wolfe line search
•  Gradient evaluation parallelizes easily

∂ f (x)
∂xi

≈ f (x + hei)− f (x)
h

Why now?
•  Perception that n function evaluations per step is too high
•  Derivative-free literature rarely compares with FD – quasi-Newton
•  Already used extensively: fminunc MATLAB

xk+1 = xk −α kHk∇f (xk)

5 10 15 20 25 30 35 40 45

Number of function evaluations

10-30

10-25

10-20

10-15

10-10

10-5

100

105

F
(x

)-
F

*

Schittkowski: s201

Stochastic Additive, Noise Level = 0

DFOtr
FDLBFGS (FD)
FDLBFGS (CD)

20 40 60 80 100 120 140 160

Number of function evaluations

10-15

10-10

10-5

100

F
(x

)-
F

*

Schittkowski: s207

Stochastic Additive, Noise Level = 0

DFOtr
FDLBFGS (FD)
FDLBFGS (CD)

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of function evaluations

10-1

100

101

102

103

104

105

F
(x

)-
F

*

Schittkowski: s287

Stochastic Additive, Noise Level = 0

DFOtr
FDLBFGS (FD)
FDLBFGS (CD)

Comparison: function decrease vs total # of function evaluations

10

Optimization of Noisy Functions

 min f (x) =φ(x)+ ε(x) f (x) = φ(x)(1+ ε(x))

 min f (x;ξ) where f (⋅;ξ) is smooth

Additive and multiplicative noise. Focus on additive

Outline of adaptive finite-difference BFGS method
1.  Estimate noise e(x) at every iteration,
2.  Possibly change h
3.  Corrective Procedure in case line search fails
4.  (need to modify line search) -0.03 -0.02 -0.01 0 0.01 0.02 0.03

x

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

f
(
x
)

f(x) = sin(x) + cos(x) + 10-3U(0,2sqrt(3))

Smooth
Noisy

11

Noise estimation More’-Wild (2011)

At x choose a random direction v
evaluate f at q +1 equally spaced points x + iβv, i = 0,...,q

Noise level: σ = [var(ε(x))]1/2

Noise estimate: ε f

Compute function differences:
Δ0 f (x) = f (x)
Δ j+1 f (x) = Δ j[Δf (x)] = Δ j[f (x + β)]− Δ j[f (x)]]

Compute finite diverence table:
Tij = Δ j f (x + iβv)
1< j < q 0 < i < j − q

 min f (x) =φ(x)+ ε(x)

σ j =
γ j

q −1− j
Ti, j
2

i=0

q− j

∑ γ j =
(j!)2

(2 j)!

Noisy L-BFGS Noisy Functions

Finite-Di↵erence L-BFGS
Noise Estimation – ECNoise

1 @ x , sample m + 1 with sampling distance �

..., f (x � 2�), f (x � �), f (x), f (x + �), f (x + 2�), ...

2 Compute di↵erences (table): Ti,k = �k f (xi), 1  k  m, 0  i  m � k

3 Approximate E{[�k f (x)]2} by the k-th level estimate

✏f
2 ⇡ �2

k =
�k

m + 1 � k

m�kX

i=0

T 2
i,k

Example: f (x) = sin(x) + cos(x) + 10�3U(0, 2
p
3), (m = 6,� = 10�2)

x f �f �2f �3f �4f �5f �6f

�3 · 10�2 1.003 7.54e � 3 2.15e � 3 1.87e � 4 �5.87e � 3 1.46e � 2 �2.49e � 2
�2 · 10�2 1.011 9.69e � 3 2.33e � 3 �5.68e � 3 8.73e � 3 �1.03e � 3
�10�2 1.021 1.20e � 2 �3.35e � 3 3.05e � 3 �1.61e � 3

0 1.033 8.67e � 3 �2.96e � 3 1.44e � 3
10�2 1.041 8.38e � 3 1.14e � 3

2 · 10�2 1.050 9.52e � 3
3 · 10�2 1.059

�k 6.65e � 3 8.69e � 4 7.39e � 4 7.34e � 4 7.97e � 4 8.20e � 4

A. S. Berahas (NW) Progress Report 2017 Evanston, IL 131 / 177

min f (x) =sin(x)+ cos(x)+10−3U(0,2 3) q = 6 β = 10−2

2

High order differences of a smooth function tend to zero rapidly, while differences
 in noise are bounded away from zero. Changes in sign, useful.

Procedure is scale invariant!

13

Finite difference itervals

Once noise estimate ε f has been chosen:

Forward difference: h = 81/4 (
ε f
µ2

)1/2 µ2 = maxx∈I | ′′f (x) |

Central difference: h = 31/3(
ε f
µ3

)1/3 µ3 ≈ | ′′′f (x) |

Bad estimates of second and third derivatives can make cause problems
(not often)

14

Adaptive Finite Difference L-BFGS Method

Estimate noise ε f
Compute h by forward or central differences [(4-8) function evaluations]
Compute gk
While convergence test not satisfied:

d = −Hkgk [L-BFGS procedure]
(x+ , f+ , flag) = LineSearch(xk , fk ,gk ,dk , fs)
IF flag=1 [line search failed]

 (x+ , f+ ,h) = Recovery(xk , fk ,gk ,dk ,maxiter)
endif

 xk+1 = x+ , fk+1 = f+
Compute gk+1 [finite differences using h]
sk = xk+1 − xk , yk = gk+1 − gk

 Discard (sk , yk) if sk
T yk ≤ 0

k = k +1
 endwhile

15

Adaptive Finite Difference L-BFGS Method

Estimate noise ε f
Compute h by forward or central differences [(4-8) function evaluations]
Compute gk
While convergence test not satisfied:

d = −Hkgk [L-BFGS procedure]
(x+ , f+ , flag) = LineSearch(xk , fk ,gk ,dk , fs)
IF flag=1 [line search failed]

 (x+ , f+ ,h) = Recovery(xk , fk ,gk ,dk ,maxiter)
endif

 xk+1 = x+ , fk+1 = f+
Compute gk+1 [finite differences using h]
sk = xk+1 − xk , yk = gk+1 − gk

 Discard (sk , yk) if sk
T yk ≤ 0

k = k +1
 endwhile

16

Corrective Procedure

Compute new noise estimate εf along search direction dk ;

Compute corresponding h
IF h ∉[0.7h,1.5h]
h = h , x+ = xk , f+ = fk [update h; do not move]

ELSE
 x+ = xk + hdk /‖dk‖, f+ = f (x+) [perturbation]

If x+ satisfies the relaxed Armijo condition
 return x+ ,h

else
 if f+ ≤ fs and f+ ≤ fk accept x+
 else if fk > fs and f+ > fs x+ = xs , f+ = fs
 else x+ = xk f+ = fk
 compute new ε f , h [random v]
 end if
end if

ENDIF

xs

Finite difference
Stencil (Kelley)

17

Line Search

BFGS method requires Armijo-Wolfe line search

f (xk +αd) ≤ f (xk)+αc1∇f (xk)d Armijo

∇f (xk +αd)T d ≥ c2∇f (xk)T d Wolfe

•  Can be problematic in the noisy case. Direction d may not be a descent
direction for smooth underlying function

•  Strategy: try to satisfy both but limit the number of attempts
•  If first trial point (unit steplength) is not acceptable relax:

Deterministic case: always possible if f is bounded below

f (xk +αd) ≤ f (xk)+αc1∇f (xk)d + 2ε f relaxed Armijo

Three outcomes: a) both satisfied; b) only Armijo; c) none

200 400 600 800 1000 1200 1400 1600 1800

Number of function evaluations

10-1

100

101

102

103

F
(x

)-
F

*

Schittkowski: s286

Stochastic Additive, Noise Level = 1e-02

DFOtr
FDLBFGS (FD)
FDLBFGS (CD)

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of function evaluations

101

102

103

104

105

F
(x

)-
F

*

Schittkowski: s287

Stochastic Additive, Noise Level = 1e-02

DFOtr
FDLBFGS (FD)
FDLBFGS (CD)

19

A simple convergence result: constant steplength

Assumptions:
1. f (x) = φ(x)+ ε(x). Function φ is twice differentiable
2. Strong convexity. µI ≺∇2φ(x)≺ LI ∀x ∈Rn

3. Hk has bounded eigenvalues
4. Bounded noise. ‖ε(x)‖ ≤ ε ∀x ∈Rn

Theorem. If

α < 1− β
(1− β)L + β 2L

for any β ∈(0,1)

Then for all k
φ(xk)−φ* ≤ (1− ρ)k (φ(x0)−φ* −η / ρ)+η / ρ

ρ = 1−αµ(1− β)

η =α[1−αL
β

+ αL
2
]ε 2

20

END

