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Motivation 

1.  Scalability 
2.  Parallelism 
3.  Beyond linear models 
4.  But should not aim for fully quadratic model 
5.  Spread function evaluations effectively 

 
1.  Use noise estimation techniques (Hamming 1960s) 
2.  Estimate good finite-difference interval h 
3.  Classical quasi-Newton updating using finite-difference gradients 
4.  Deal with noise adaptively 
5.  Can solve problems with thousands of variables 
6.  Convergence to a neighborhood of solution 

Problem 1:  min f (x) f  smooth but derivatives not available

Problem 2:  min f (x;ξ ) f (⋅;ξ ) smooth
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Nonsmooth Optimization                                      Lewis and Overton 
 

BFGS method with the right line search is more 
effective in practice than bundle methods or any other 
approach they tried (Curtis) 
 
The Wolfe line search ensures that a convex model can 
be created. Only assume function is bounded below 
 
Gradient exists almost everywhere: 
 
 
f (xk +αd) ≤ f (xk )+αc1∇f (xk )T d    Armijo

∇f (xk +αd)T d ≥ c2∇f (xk )T d       Wolfe

0 < c1 < c2 <1

xk+1 = xk −α kHk∇f (xk )

f (x) =| x |
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Nonsmooth Optimization                             Lewis and Overton: 
 

The BFGS matrix captures the U-V structure of 
the objective 
 
Hessian approximation blows up (good thing) 
 
Never observed failures 
Very limited convergence results 
Where do we go from here? 
 
 Power of Armijo-Wolfe line search not appreciated by the convex 

analysis community 
Rather than constructing a majorizing function, one constructs a 
convex model along the search direction 
 
 

xk+1 = xk −α kHk∇f (xk )
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Discussion 

1.  The BFGS method continues to surprise 
2.  One of the leading algorithms for nonsmooth optimization 
3.  Leading approach for (deterministic) derivative-free optimization 
4.  This talk: Leading method for the minimization of noisy functions 

These observations do not apply to: 
1.  Structured nonsmooth optimization (e.g. lasso) 
2.  Stochastic objectives with cheap gradient, as in machine learning 
3.  Nonlinear least squares objectives; Gauss-Newton is the right approach 

We had not fully recognized the power and generality of quasi-Newton 
updating 
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Derivative free deterministic optimization (no noise) 

•  Interpolation based models with trust regions (Katya) 
 

min f (x)        f  is smooth

1.  Need (n+1)(n+2)/2 function values to define quadratic model by pure 
interpolation 

2.  Can use n points and assume minimum norm change in the Hessian 
3.  Arithmetic costs high: n4 

4.  Placement of interpolation points is important 
5.  Trust region constraint needed – and natural 
6.  Parallelizable? 

 min m(x) = xT Bx + gT x    s.t.     ‖x‖2≤ Δ
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BFGS with finite difference gradients: deterministic case 

•  Invest significant effort in estimation of gradient 
•  Delegate construction of model to BFGS 
•  Interpolating gradients 
•  Modest linear algebra costs O(n) 
•  Placement of sample points on an orthogonal set 
•  BFGS is an overwriting process: no inconsistencies or ill conditioning 

with Armijo-Wolfe line search 
•  Gradient evaluation parallelizes easily 
 
 

∂ f (x)
∂xi

≈ f (x + hei )− f (x)
h

Why now? 
•  Perception that n function evaluations per step is too high 
•  Derivative-free literature rarely compares with FD – quasi-Newton 
•  Already used extensively: fminunc MATLAB 
 
 

xk+1 = xk −α kHk∇f (xk )
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Optimization of Noisy Functions 

 min f (x) =φ(x)+ ε(x)       f (x) = φ(x)(1+ ε(x))

                                 min f (x;ξ )     where   f (⋅;ξ ) is smooth

Additive and multiplicative noise. Focus on additive 

Outline of adaptive finite-difference BFGS method 
1.  Estimate noise e(x) at every iteration,  
2.  Possibly change h 
3.  Corrective Procedure in case line search fails 
4.  (need to modify line search) -0.03 -0.02 -0.01 0 0.01 0.02 0.03

x

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

f
(
x
)

f(x) = sin(x) + cos(x) + 10-3U(0,2sqrt(3)) 

Smooth
Noisy



11 

      

Noise estimation                                             More’-Wild (2011) 

At x  choose a random direction v
evaluate f  at q +1 equally spaced points  x + iβv, i = 0,...,q

 

Noise level:        σ = [var(ε(x))]1/2

Noise estimate:     ε f

Compute function differences:
Δ0 f (x) = f (x)
Δ j+1 f (x) = Δ j[Δf (x)] = Δ j[ f (x + β )]− Δ j[ f (x)]]

Compute finite diverence table:
Tij = Δ j f (x + iβv)
1< j < q 0 < i < j − q

 min f (x) =φ(x)+ ε(x)       

σ j =
γ j

q −1− j
Ti, j
2

i=0

q− j

∑ γ j =
( j!)2

(2 j)!



Noisy L-BFGS Noisy Functions

Finite-Di↵erence L-BFGS
Noise Estimation – ECNoise

1 @ x , sample m + 1 with sampling distance �

..., f (x � 2�), f (x � �), f (x), f (x + �), f (x + 2�), ...

2 Compute di↵erences (table): Ti,k = �k f (xi ), 1  k  m, 0  i  m � k

3 Approximate E{[�k f (x)]2} by the k-th level estimate

✏f
2 ⇡ �2

k =
�k

m + 1 � k

m�kX

i=0

T 2
i,k

Example: f (x) = sin(x) + cos(x) + 10�3U(0, 2
p
3), (m = 6,� = 10�2)

x f �f �2f �3f �4f �5f �6f

�3 · 10�2 1.003 7.54e � 3 2.15e � 3 1.87e � 4 �5.87e � 3 1.46e � 2 �2.49e � 2
�2 · 10�2 1.011 9.69e � 3 2.33e � 3 �5.68e � 3 8.73e � 3 �1.03e � 3
�10�2 1.021 1.20e � 2 �3.35e � 3 3.05e � 3 �1.61e � 3

0 1.033 8.67e � 3 �2.96e � 3 1.44e � 3
10�2 1.041 8.38e � 3 1.14e � 3

2 · 10�2 1.050 9.52e � 3
3 · 10�2 1.059

�k 6.65e � 3 8.69e � 4 7.39e � 4 7.34e � 4 7.97e � 4 8.20e � 4

A. S. Berahas (NW) Progress Report 2017 Evanston, IL 131 / 177

min f (x) =sin(x)+ cos(x)+10−3U(0,2 3 ) q = 6 β = 10−2        

2 

High order differences of a smooth function tend to zero rapidly, while differences 
 in noise are  bounded away from zero. Changes in sign, useful. 
 
Procedure is scale invariant! 
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Finite difference itervals 
 

 

Once noise estimate ε f has been chosen:

Forward difference:   h = 81/4 (
ε f
µ2

)1/2 µ2 = maxx∈I | ′′f (x) |

Central difference:  h = 31/3(
ε f
µ3

)1/3 µ3 ≈  | ′′′f (x) |

Bad estimates of second and third derivatives can make cause problems 
(not often) 
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Adaptive Finite Difference L-BFGS Method 

 

Estimate noise ε f
Compute h by forward or central differences  [(4-8) function evaluations]
Compute gk
While convergence test not satisfied:

d = −Hkgk [L-BFGS procedure]
(x+ , f+ , flag) =  LineSearch(xk , fk ,gk ,dk , fs )
IF flag=1     [line search failed]

     (x+ , f+ ,h) = Recovery(xk , fk ,gk ,dk ,maxiter )
endif

   xk+1 = x+ , fk+1 = f+
Compute gk+1        [finite differences using h]
sk = xk+1 − xk , yk = gk+1 − gk

    Discard (sk , yk )  if  sk
T yk ≤ 0

k = k +1
   endwhile
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Adaptive Finite Difference L-BFGS Method 

 

Estimate noise ε f
Compute h by forward or central differences  [(4-8) function evaluations]
Compute gk
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(x+ , f+ , flag) =  LineSearch(xk , fk ,gk ,dk , fs )
IF flag=1     [line search failed]

     (x+ , f+ ,h) = Recovery(xk , fk ,gk ,dk ,maxiter )
endif

   xk+1 = x+ , fk+1 = f+
Compute gk+1        [finite differences using h]
sk = xk+1 − xk , yk = gk+1 − gk

    Discard (sk , yk )  if  sk
T yk ≤ 0

k = k +1
   endwhile



16 

Corrective Procedure 

  

Compute new noise estimate εf  along search direction dk ;

Compute corresponding h
IF  h ∉[0.7h,1.5h]
h = h , x+ = xk , f+ = fk     [update h; do not move]

ELSE
   x+ = xk + hdk /‖dk‖, f+ = f (x+ ) [perturbation]

If x+  satisfies the relaxed Armijo condition
       return x+ ,h

else
     if f+ ≤ fs   and  f+ ≤ fk   accept x+
     else if  fk > fs  and  f+ > fs x+ = xs , f+ = fs
     else x+ = xk f+ = fk
        compute new ε f , h  [random v]
     end if
end if

ENDIF

xs

Finite difference 
Stencil (Kelley) 
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Line Search 
 

BFGS method requires Armijo-Wolfe line search 

f (xk +αd) ≤ f (xk )+αc1∇f (xk )d       Armijo

∇f (xk +αd)T d ≥ c2∇f (xk )T d       Wolfe

•  Can be problematic in the noisy case. Direction d may not be a descent 
direction for smooth underlying function 

•  Strategy: try to satisfy both but limit the number of attempts 
•  If first trial point (unit steplength) is not acceptable relax: 

Deterministic case: always possible if f is bounded below 

 
f (xk +αd) ≤ f (xk )+αc1∇f (xk )d  + 2ε f      relaxed Armijo

Three outcomes: a) both satisfied;   b) only Armijo;   c) none 
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A simple convergence result: constant steplength 
 

   

Assumptions:
1. f (x) = φ(x)+ ε(x). Function φ is twice differentiable
2. Strong convexity.  µI ≺∇2φ(x)≺ LI ∀x ∈Rn

3. Hk has bounded eigenvalues
4. Bounded noise.   ‖ε(x)‖ ≤ ε   ∀x ∈Rn

Theorem. If

α < 1− β
(1− β )L + β 2L

for any β ∈(0,1)

Then for all k
φ(xk )−φ* ≤ (1− ρ)k (φ(x0 )−φ* −η / ρ)+η / ρ  

ρ = 1−αµ(1− β )

η =α[1−αL
β

+ αL
2
]ε 2
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END 
 


