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The holy grail of optimization

Ax = b

x

Find such that 
AFix a positive definite, n x n matrix

Linear regression/classification
Interior Point Methods

•Quadratic Programming
•Sequential Quadratic Programming
•Newton’s Method

Hard case for Nesterov
Dense case ~ bigger sparse cases

minimize 1
2x

T
Ax� b

T
x

Sum of Squares



Iterative Solvers

Ax = b

x

Find such that 
AFix a positive definite, n x n matrix

complexity = (number of iterations) x (flops per iteration)

xk+1 = xk � s(Axk � b)
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Steepest Descent



Iterative Solvers

Ax = b

x

Find such that 
AFix a positive definite, n x n matrix

complexity = (number of iterations) x (flops per iteration)
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Iterative Solvers

Ax = b

x

Find such that 
AFix a positive definite, n x n matrix

complexity = (number of iterations) x (flops per iteration)

⇡ O
�
n2K(A) log(1/✏)

�

direct solve complexity = O(n3)

Not sublinear in dimension….



Iterative or Direct?

Ax = b

x

Find such that 
AFix a positive definite, n x n matrix

iterative complexity ⇡ O
�
n2K(A) log(1/✏)

�

direct solve complexity = O(n3)

n=60,000
b 60,000 x 10

kx� x?kF
kx?kF

= 0.58
direct solve wall clock = 111s  

iterative wall clock = 127s  

Are we selling ourselves 
short with these crummy 

iterative methods?



Why is direct faster?
iterative complexity ⇡ O

�
n2K(A) log(1/✏)

�

direct solve complexity = O(n3)

n=60,000
b 60,000 x 10

•To achieve maximum speed, data shuffling is required
•Memory bandwidth is critical
•Maybe we just need more RAM?

kx� x?kF
kx?kF

= 0.58
direct solve wall clock = 111s  

iterative wall clock = 127s  
Are we selling ourselves 
short with these crummy 

iterative methods?



I NEED MOAR RAM

n RAM Time

60,000 30GB 111s

350K 1TB 6 hours

1.2M 12TB 10 days

• Superlinear scaling is the worst.

• Memory demand growing 
quadratically means more than 
one computer is needed for 
anything larger than 400K.

• Cubic time scaling means a lot 
of cores are needed to 
minimize time.

• Where can I get all of this 
compute?

Time extrapolation based 
on 64 cores, 2TB RAM



THE CLOUD



Cloud Computing CHOICEs

Amazon 
EC2

t2.nano, t2.micro, t2.small
m4.large, m4.xlarge, m4.2xlarge, 
m4.4xlarge, m3.medium, c4.large, 
c4.xlarge, c4.2xlarge,
c3.large, c3.xlarge, c3.4xlarge,
r3.large, r3.xlarge, r3.4xlarge,
i2.2xlarge, i2.4xlarge, d2.xlarge 
d2.2xlarge, d2.4xlarge,…

Microsoft
Azure

Basic tier : A0, A1, A2, A3, A4
Optimized Compute : D1, D2, D3, D4, 
D11, D12, D13
D1v2, D2v2, D3v2, D11v2,…
Latest CPUs: G1, G2, G3, …
Network Optimized: A8, A9
Compute Intensive: A10, A11,…

n1-standard-1, ns1-standard-2, ns1-
standard-4, ns1-standard-8, ns1-
standard-16, ns1highmem-2, ns1-
highmem-4, ns1-highmem-8, n1-
highcpu-2, n1-highcpu-4, n1-highcpu-8, 
n1-highcpu-16, n1-highcpu-32, f1-micro, 
g1-small…

Google Cloud 
Engine





TYRANNY of CHOICE



#THECLOUDISTOODAMNHARD
• What type? what 

instance? What base 
image?

• What is the cheapest 
configuration to run my 
job in 2 hours?

• How many to spin up? 
What price? spot? 

• wait, Wait, WAIT oh god



Do choices matter?
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~2x performance difference for same price
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Do choices MATTER ?

computation + communication yield non-linear scaling



Computation patterns

Time INPUT Time 1
machines



Communication Patterns

ONE-To-ONE Tree DAG All-to-one

CONSTANT LOG LINEAR

19



BASIC Model

time= x1 + x2 ∗
input

machines
+ x3 ∗ log(machines)+ x4 ∗ (machines)

Serial 
Execution

Computation (linear)

Tree DAG

All-to-One DAG

Collect Training Data Fit Linear Regression



Given a Linear Model

Lower variance !  
Better model 

λi - Fraction of times each experiment is run

Bound total cost

yi = a

T
i x+ wi, i = 1, . . . ,m

minimize tr
n

�

Pm
i=1 �iaiaTi

��1
o

�i 2 [0, 1]
Pm

I=1 ci�i  B

Optimal Design of Experiments
Collection of 

(input, machines)

Associate cost with  
each experiment
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CHOOSING INSTANCE TYPES

8 r3.4xlarge

16 r3.2xlarge

32 r3.xlarge

Time (seconds)
0 2750 5500 8250 11000

568.014

465.54

405.357

Running Time Training



Wait.  That still seems hard!

…and what happened to the RAM?



• 300 seconds  
single-core (AVX2) 

• 512 MB in /tmp

• 1.5GB RAM

• Python, Java, Node

AWS LAMBDA

• S3 = Simple Storage Service.  Essentially infinite RAM
• Communication at 600MB/s per machine (same speed as SATA)
• (PCI Bus is 1GB/s, Memory Bus is 80GB/s)



• 300 seconds  
single-core (AVX2) 

• 512 MB in /tmp

• 1.5GB RAM

• Python, Java, Node

AWS LAMBDA



LAMBDA SCALABILITY
Compute Data



“Most wrens are small and rather inconspicuous, except 
for their loud and often complex songs.”

pywren



THE API



How it works

pull job from s3
download anaconda runtime

python to run code
pickle result
stick in S3

your laptop the cloud

future = runner.map(fn, data)

Serialize func and data
Put on S3
Invoke Lambda

func datadatadata

future.result()

poll S3
unpickle and return

result



How expensive is S3?
(Taking dimensionality analysis seriously, or “beyond PSPACE”)

•Simple Storage Service
•Essentially infinite RAM
•Communication at 
600MB/s per machine

•Same speed as SATA
•(PCI Bus is 1GB/s, 
Memory Bus is 80GB/s)



• How do algorithms change 
when you have infinite 
memory (through a straw)

• Never discard intermediate 
information



• Parallel matrix multiplication is easy when output matrix 
is small

• Fits cleanly into map-reduce framework

 

• That’s a lot of SIMD cores!

numpywren

D x N = D x D

N x D

+ … + = D x D



• However when output matrix is very large it becomes 
very difficult or expensive to store in memory

• For example for N = 1e6 and D=1e4 
• D x D matrix of doubles is 800 Mb
• N x N matrix of doubles is 8 TB

• Storing 8 TB in memory traditional cluster is expensive!

N x D

D x N =
N x N

numpywren



• Solution: Use S3 to store matrices, 
stream blocks to Lambdas to 
compute output matrix in parallel

N x N

� � � �

�

�

�

���
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���

N D Lambdas Runtime Output Size

50000 784 225 192s 20 GB

50000 18432 225 271s 20 GB

1.2 
Millon 4096 3000 1320s 11 TB

1.2 
Million 18432 3000 2520s 11 TB

numpywren



• Solution: Use S3 to store matrices, 
stream blocks to Lambdas to 
compute output matrix in parallel

N x N
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Cholesky in numpywren
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• Solution: Use S3 to store matrices, 
stream blocks to Lambdas to 
compute output matrix in parallel

N x N
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• Solution: Use S3 to store matrices, 
stream blocks to Lambdas to 
compute output matrix in parallel

N x N
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• Solution: Use S3 to store matrices, 
stream blocks to Lambdas to 
compute output matrix in parallel

N x N
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• Solution: Use S3 to store matrices, 
stream blocks to Lambdas to 
compute output matrix in parallel

N x N
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Cholesky in numpywren
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The future is direct solves

Ax = b

x

Find such that 
AFix a positive definite, n x n matrix

•Iterative methods are not fast
•New substrates make large-scale direct solve reachable
•Need simpler tools and cost management
•There are algorithmic challenges in noniterative methods

minimize 1
2x

T
Ax� b

T
x
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