ESTATE OF CONT TH' COMPLI

Benjamin Recht UC Berkeley

My quixotic quest for superlinear algorithms

Benjamin Recht UC Berkeley

Collaborators

Slides extracted by torturing Eric Jonas, Vaishaal Shankar, Stephen Tu, Shivaram Venkataraman, and Ashia Wilson

The holy grail of optimization Fix a positive definite, n x n matrix AFind x such that Ax = b

minimize

Linear regression/classification Interior Point Methods Sum of Squares

$$\frac{1}{2}x^T A x - b^T x$$

- Quadratic Programming
- •Sequential Quadratic Programming
- •Newton's Method

Hard case for Nesterov

Dense case ~ bigger sparse cases

Iterative Solvers Fix a positive definite, n x n matrix AFind x such that Ax = b

- - $O\left(\frac{L}{\mu}\log(1/\epsilon)\right) \qquad O(n^2)$

complexity = (number of iterations) \times (flops per iteration)

 $x_{k+1} = x_k - s(Ax_k - b)$ Steepest Descent

Iterative Solvers Fix a positive definite, n x n matrix AFind x such that Ax = b

complexity = (number of iterations) \times (flops per iteration) $O\left(n\frac{L_{\max}}{\mu}\log(1/\epsilon)\right) \qquad O(n)$

 $x_{k+1}^{(i)} = x_k^{(i)} - A_{ii}^{-1} (a_i^T x_k - b_i)$

Coordinate Descent (Gauss-Seidel)

Iterative Solvers Fix a positive definite, n x n matrix AFind x such that Ax = b

direct solve complexity = $O(n^3)$

complexity = (number of iterations) \times (flops per iteration)

 $\approx O\left(n^2 K(A) \log(1/\epsilon)\right)$ Not sublinear in dimension....

Iterative or Direct? Fix a positive definite, n x n matrix AFind x such that Ax = biterative complexity $\approx O\left(n^2 K(A) \log(1/\epsilon)\right)$ direct solve complexity = $O(n^3)$ direct solve wall clock = 111s $\frac{\|x - x_{\star}\|_{F}}{\|x - \|_{F}} = 0.58$ $||\mathcal{X}_{\star}||_{F}$ iterative wall clock = 127s

n=60,000 b 60,000 × 10

Are we selling ourselves short with these crummy iterative methods?

- To achieve maximum speed, data shuffling is required
- Memory bandwidth is critical
- Maybe we just need more RAM?

Why is direct faster?

n=60,000 b 60,000 × 10

$$\frac{x_\star \|_F}{\|_F} = 0.58$$

Are we selling ourselves short with these crummy iterative methods?

I NEED MOAR RAM

N	RAM	Time
60,000	30GB	s
350K	ΙΤΒ	6 hours
1.2M	I2TB	10 days

Time extrapolation based on 64 cores, 2TB RAM

- Superlinear scaling is the worst.
- Memory demand growing quadratically means more than one computer is needed for anything larger than 400K.
- Cubic time scaling means a lot of cores are needed to minimize time.
- Where can I get all of this compute?

Cloud Computing CHOICEs

t2.nano, t2.micro, t2.small m4.large, m4.xlarge, m4.2xlarge, m4.4xlarge, m3.medium, c4.large, c4.xlarge, c4.2xlarge, c3.large, c3.xlarge, c3.4xlarge, r3.large, r3.xlarge, r3.4xlarge, i2.2xlarge, i2.4xlarge, d2.xlarge d2.2xlarge, d2.4xlarge,...

Amazon

Basic tier: A0, A1, A2, A3, A4 Optimized Compute : DI, D2, D3, D4, DII, DI2, DI3D|v2, D2v2, D3v2, D||v2,...Latest CPUs: GI, G2, G3, ... Network Optimized: A8, A9 Compute Intensive: AI0, AII,...

Microsoft Azure

nl-standard-l, nsl-standard-2, nslstandard-4, nsl-standard-8, nslstandard-16, ns1highmem-2, ns1highmem-4, nsl-highmem-8, nlhighcpu-2, nl-highcpu-4, nl-highcpu-8, nl-highcpu-16, nl-highcpu-32, fl-micro, gl-small...

> Google Cloud Engine

EC2Instances.info Easy Amazon EC2 Instance Comparison

EC2 PDS

Region: US East (N. Virginia) +	Cost Hourly -	Reserved.	1 yr - No Upfront -	Columna -	Compare Selected Clear F	Filtérs							
Filter: Min Memory (GB):	Compute Units:	S	torage (GB):	-									
Name	API Name	Memory	Compute Units (ECU) vCPUs	Storage	Arch	Network Performance	EBS Optimized: Max Bandwidth	VPC Only	Linux On Demand cost	Linux Reserved cost	Windows On Demand cost	Windows Reser
Cluster Compute Eight Extra Large	cc2.8xiarge	60.5 GB	88 units	32 vCPUs	3360.0 GB (4 * 840.0 GB)	64-bit	10 Gigabit	N/A	No	\$2.000 hourly	\$1.090 hourly	\$2.570 hourly	\$1,338 hourly
Cluster GPU Quadruple Extra Large	cg1.4xlarge	22.5 GB	33.5 units	16 vCPUs	1680.0 GB (2 * 840.0 GB)	64-bit	10 Gigabit	N/A	No	\$2.100 hourly	unavailable	\$2.600 hourly	unavailable
T2 Nano	t2.nano	0.5 GB	Burstable	1 vGPUs	0 GB (EBS only)	64-bit	Low	N/A	Yea	\$0.006 hourly	\$0.005 hourly	\$0.009 hourly	\$0.007 hourly
T2 Mioro	t2.micro	1.0 GB	Burstable	1 VCPUs	0 GB (EBS only)	32/64-bit	Low to Moderate	N/A	Yes	\$0.013 hourly	\$0.009 hourly	\$0.018 hourly	\$0.014 hourly
T2 Small	t2.small	2.0 GB	Burstable	1 vGPUs	0 GB (EBS only)	32/64-bit	Low to Moderate	N/A	Yes	\$0.026 hourly	\$0.018 hourly	\$0.036 hourly	\$0.032 hourly
T2 Medium	t2.medium	4.0 GB	Burstable	2 vCPUs	0 GB (EBS only)	64-bit	Low to Moderate	N/A	Yes	\$0.052 hourly	\$0.036 hourly	\$0.072 hourly	\$0.062 hourly
T2 Large	12.large	8.0 GB	Burstable	2 vCPUs	0 GB (EBS only)	64-bit	Low to Moderate	N/A	Yes	\$0.104 hourly	\$0.072 hourly	\$0.134 hourly	\$0.106 hourly
M4 Large	m4.large	5.0 GB	6.5 units	2 vGPUs	0 GB (EBS only)	64-bit	Moderate	450.0 Mbps	Yes	\$0.120 hourly	\$0,083 hourly	\$0.246 hourly	\$0.184 hourly
M4 Extra Large	m4 xlarge	16.0 GB	13 units	4 vGPUs	0 GB (EBS only)	64-bit	High	750.0 Mbps	Yea	\$0.239 hourly	\$0.164 hourly	\$0.491 hourly	\$0.366 hourly
M4 Double Extra Large	m4.2xlarge	32.0 GB	26 units	8 vCPUs	0 GB (EBS only)	64-biz	High	1000.0 Mbps	Yes	\$0.479 hourly	\$0.329 hourly	\$0.983 hourly	\$0.735 hourly
M4 Quadruple Extra Large	m4.4xdarge	64.0 GB	53.5 units	16 vCPUs	0 GB (EBS only)	64-bit	High	2000.0 Mbps	Yes	\$0.958 hourly	\$0.658 hourly	\$1.966 hourly	\$1.469 hourly
M4 Deca Extra Large	m4.10xiarge	160.0 GB	124.5 units	40 vCPUs	0 GB (EBS only)	64-bit	10 Gigabít	4000.0 Mbps	Yes	\$2.394 hourly	\$1.645 hourly	\$4.914 hourly	\$3.672 hourly
M4 16xlarge	m4.16xiarge	256.0 GB	188 units	64 vCPUs	0 GB (EBS only)	64-bit	20 Gigabit	10000.0 Mbps	Yes	\$3.830 hourly	\$2,632 hourly	\$7.862 hourly	\$5.875 hourly
C4 High-CPU Large	c4.large	3.75 GB	8 units	2 vGPUs	0 GB (EBS only)	64-bit	Moderate	500.0 Mbps	Yes	\$0.105 hourly	\$0.078 hourly	\$0.193 hourly	\$0.170 hourly
C4 High-CPU Extra Large	c4.xlarge	7.5 GB	16 units	4 vGPUs	0 GB (EBS only)	64 bit	High	750.0 Mbps	Yes	\$0.209 hourly	\$0,155 hourly	\$0.386 hourly	\$0.339 nourly
C4 High-CPU Double Extra Large	c4.2xlarge	15.0 GB	31 units	8 vCPUs	0 GB (EBS only)	64-bit	High	1000.0 Mbps	Yes	\$0.419 hourly	\$0.311 hourly	\$0.773 hourly	\$0.679 hourly
C4 High-CPU Quadruple Extra Large	c4.4xlarge	30.0 GB	62 units	16 vCPUs	0 GB (EBS only)	64-bit	High	2000.0 Mbps	Yes	\$0.836 hourly	\$0.621 hourly	\$1.546 hourly	\$1.357 hourly
C4 High-CPU Eight Extra Large	c4.8xlarge	60.0 GB	132 units	36 vCPUs	0 GB (EBS only)	64-bit	10 Gigabit	4000.0 Mbps	Yes	\$*.875 hourly	\$1.242 hourly	\$3.091 hourly	\$2,769 hourly
P2 Extra Large	p2.xlarge	61.0 GB	12 units	4 vCPUs	0 GB (EBS only)	64-bit	High	750.0 Mbps	No	\$0.900 hourly	\$0.684 hourly	\$1.084 hourly	\$0.868 hourly
P2 Eight Extra Large	p2.8xlarge	488.0 GB	94 units	32 vCPUs	0 GB (EBS only)	64-bit	10 Gigabit	5000,0 Mbps	No	\$7.200 hourly	\$5.476 hourly	\$8.672 hourly	\$6.948 hourly
P2 16xlarge	p2.16xlarge	732.0 GB	188 units	64 VCPUs	0 GB (EBS only)	64-bit	20 Gigabit	10000.0 Mbps	No	\$14.400 hourly	\$10.951 hourly	\$17,344 hourly	\$13.895 hourly
G2 Double Extra Large	g2.2x arge	15.0 GB	26 units	8 vGPUs	60.0 GB SSD	64-bit	High	1000.0 Mbps	No	\$0.650 hourly	\$0.474 hourly	\$0.757 hourly	\$0.611 hourly
G2 Elght Extra Large	g2.8xlarge	60.0 GB	104 units	32 vCPUs	240.0 GB (2 * 120.0 GB SSD)	64-bit	10 Gigabit	NZA	No	\$2.600 hourly	\$1.896 hourly	\$2.878 hourly	\$1.979 hourly
X1 16xlarge	x1.16xlarge	976.0 GB	174.5 units	64 vCPUs	1920.0 GB SSD	64-bit	10 Gigabit	5000.0 Mbps	No	\$6.669 hourly	\$4.579 hourly	\$9.613 hourly	\$7.523 hourly
X1 32xlarge	x1.32xiarge	1952.0 GB	349 units	128 vCPUs	3840.0 GB (2 - 1920.0 GB SSD)	64-bit	20 Gigabit	10000.0 Mbps	No	\$13.338 hourly	\$9.158 hourly	\$19.226 hourly	\$15.046 hourly
R3 High-Memory Large	r3.large	15.25 GB	6.5 units	2 vGPUs	32.0 GB SSD	64-bit	Moderate	N/A	No	\$0.166 nourly	\$0.105 hourly	\$0.291 hourly	\$0.238 hourly
R3 High-Memory Extra Large	r3.xlarge	30.5 GB	18 units	4 vGPUs	80,0 GB SSD	64-bit	Moderate	500.0 Mbps	No	\$0.333 hourly	\$0,209 hourly	\$0.583 hourly	\$0.428 hourly
R3 High-Memory Double Extra Large	r3.2xlarge	61.0 GB	26 units	8 vGPUs	160.0 GB SSD	64-bit	High	1000.0 Mbps	No	\$0.655 hourly	\$0.418 hourly	\$1.045 hourly	\$0.824 hourly
R3 High-Memory Quadruple Extra Lar	rge r3.4xlarge	122.0 GB	52 units	16 vCPUs	320.0 GB SSD	64-bit	High	2000.0 Mbps	No	\$1.330 hourly	\$0.836 hourly	\$1.944 hourly	\$1,490 hourly
R3 High-Memory Eight Extra Large	r3.8xlarge	244.0 GB	104 units	32 vCPUs	640.0 GB (2 * 320.0 GB SSD)	64-bit	10 Gigabit	N/A	No	\$2.660 hourly	\$1.672 hourly	\$3.500 hourly	\$1.989 hourly
12 Extra Large	i2.xlarge	30.5 GB	14 units	4 vGPUs	800.0 GE SSD	64-bit	Mocerate	500.0 Mbps	No	\$0,853 hourly	\$0.424 hourly	\$0.973 hourly	\$0.565 hourly
12 Double Extra Large	i2.2xlarge	61.0 GB	27 units	8 vCPUs	1600.0 GB (2 * 800.0 GB SSD)	64-bit	High	1000.0 Mbps	No	\$1.705 hourly	\$0.848 hourly	\$1.946 hourly	\$1,131 hourly
12 Quadruple Extra Large	12.4xlarge	122.0 GB	53 units	16 vCPUs	3200.0 GB (4 * 800.0 GB SSD)	64-bit	High	2000.0 Mbps	No	\$3,410 hourly	\$1.696 hourly	\$3.891 hourly	\$2,260 hourly

TYRANNY of CHOICE

#THECLOUDISTOODAMNHARD

- What type? what instance? What base image?
- What is the cheapest configuration to run my job in 2 hours?
- How many to spin up?
 What price? spot?
- wait, Wait, WAIT oh god

EC2Instances.info Easy Amazon EC2 Instance Comparison

RD

M4 Qu

C4 High C4 High C4 High

P2 Eigh P2 16xi G2 Dou

R3 High

12 Qua 12 Eign

D2 Do

Hit. Hig High Sta M3 Gen M3 Gen

M3 Gen

: US East (N. Virginia) - 0	Cost Rounly -	Reserved: 1 yr - No Upfront -	Galumna -	Compare Selected Clear P	illérs							
in Memory (GB):	Compute Units:	Storage (GB):) —									
	API Name	Memory Compute Units (EC	U) VCPUs	Storage	Arch	Network Performance	EBS Optimized: Max Bandwidth	VPC Only	Linux On Demand cost	Linux Reserved cost	Windows On Demand cost	Windows Reserved cost
Compute Eight Extra Large	cc2.8xiarge	60.5 GB 88 units	32 vCPUs	3360.0 GB (4 * 840.0 GB)	64-1	ort. 10 Gigabit	N/A	No	\$2.000 hourly	\$1.090 hourly	\$2.570 hourly	\$1,336 hourly
3PU Quadruple Extra Large	cg1.4xiarge	22.5 GB 33.5 units	16 vCPUs	1650.0 GB (2 * 840.0 GB)	64-1	bit 10 Gigabit	N/A	No	\$2.100 hourly	unavailable	\$2.600 hourly	unavailable
	t2.nario	0.5 GB Burstable	1 vGPUs	0 GB (EBS only)	64-1	bit Low	N/A	Yea	\$0.006 hourly	\$0.005 hourly	\$0.009 hourly	\$0.007 hourly
	12.micro	1.0 GB Burstable	1 VCPUs	0 GB (EBS only)	32/64-1	bit Low to Moderate	N/A	Yes	\$0.013 hourly	\$0.009 hourly	\$0.018 hourly	\$0.014 hourly
Ê.	t2.small	2.0 GB Burstable	1 vCPUs	0 GB (EBS only)	32/64-1	bit Low to Moderate	NA	Yes	\$0.026 hourly	\$0.018 hourly	\$0.036 hourly	\$0.032 hourly
um	t2.medium	4.0 GB Burstable	2 vCPUs	0 GB (EBS only)	64-1	hit Low to Moderate	N/A	Yes	\$0.052 hourly	\$0.036 hourly	\$0.072 hourly	\$0.062 hourly
	t2.large	8.0 GB Burstable	2 vCPUs	0 GB (EBS only)	64-1	bit Low to Moderate	N/A	Yes	\$0.104 hourly	\$0.072 hourly	\$0.134 hourly	\$0.106 hourly
e	m4.large	8.0 GB 6.5 units	2 vGPUs	0 GB (EBS only)	64-1	bit Moderate	450.0 Mbps	Yes	\$0.120 hourly	\$0,083 hourly	\$0.246 hourly	\$0.184 hourly
a Large	m4 xlarge	16.0 GB 13 units	4 vCPUs	0 GB (EBS only)	64-t	oit High	750.0 Mbps	Yea	\$0.239 hourly	\$0.164 hourly	\$0.491 hourly	\$0.366 hourly
ble Extra Large	m4.2xlarge	32.0 GB 26 units	8 vCPUs	0 GB (EBS only)	64-1	bit High	1000.0 Mbps	Yes	\$0.479 hourly	\$0.329 hourly	\$0.983 hourly	\$0.735 hourly
druple Extra Large	m4.4xdarge	64.0 GB 53.5 units	16 vCPUs	0 GB (EBS only)	64-t	oit High	2000.0 Mbps	Yes	\$0.958 hourly	\$0.658 hourly	\$1.966 hourly	\$1.469 hourly
a Extra Large	m4.10xiarge	160.0 GB 124.5 units	40 vCPUs	0 GB (EBS only)	64-1	nit 10 Gigabit	4000.0 Mbps	Yes	\$2.394 hourly	\$1.645 hourly	\$4.914 hourly	\$3.672 hourly
arge	m4 16xiarge	256.0 GB 188 units	64 vCPUs	0 GB (EBS only)	64-1	of: 20 Gigabit	10000.0 Mbps	Yes	\$3.830 hourly	\$2,632 hourly	\$7.862 hourly	\$5.875 hourly
-CPU Large	c4.large	3.75 GB 8 units	2 vGPUs	0 GB (EBS only)	64-1	bit Moderate	500.0 Mbps	Yes	\$0.195 hourly	\$0.078 hourly	\$0.193 hourly	\$0.170 hourly
-CPU Extra Large	c4.xiarde	7.5 GB 16 units	4 vCPUs	0 GB (EBS only)	64-1	bit High	750.0 Mbps	Yes	\$0.209 hourly	\$0,155 hourly	\$0.386 houriv	\$0.339 hourly
-CPU Double Extra Large	c4.2xlarge	15.0 GB 31 units	8 vCPUs	0 GB (EBS only)	64-1	bit High	1000.0 Mbps	Yea	\$0.419 hourly	\$0.311 hourly	\$0.773 hourly	\$0.679 hourly
-CPU Quadruple Extra Large	c4 4xlarge	30.0 GB 62 units	16 vCPUs	0 GB (EBS only)	64-1	bit High	2000.0 Mbps	Yes	\$0.836 hourly	\$0.621 hourly	\$1.546 hourly	\$1.357 hourly
-CPU Eight Extra Large	c4.8xlarge	60.0 GB 132 units	36 vCPUs	0 GB (EBS only)	64-1	oit. 10 Ginabit.	4000.0 Mbos	Yes	\$*.875 hourly	\$1.242 hourly	\$3.091 hourly	\$2,769 hourly
lame	n2.xlame	61.0 GB 12 units	4 vCPUs	0 GB (EBS only)	64-1	hit Hint	750.0 Mbos	No	\$3,930 hourly	\$0.684 hourly	\$1.084 hourly	\$0.858 bourly
: Evtra i arce	no Avlame	498.0 GB 94 unite	32 VCPLIE	0 GB (EBS only)	64-1	hit 10 Glashit	5000 0 Mbos	No	\$7 200 hourly	\$5.476 bourly	\$8.672 hourly	\$5.948 hourly
me	nº 16viano	792.0 GB 198 units	84 UCPI le	0 GB (EBS only)	64.1	al: 20 Gloshit	10000 0 Mbps	No	\$14 400 bourly	\$10.951 bourly	\$17 344 bourly	\$13 895 bourly
nie Evtre i sme	ad 2x sma	15.0 GB 26 units	SyCOLe	60 d CB SSD	64.	hit Hinh	1000 0 MHos	No	\$2,650 bourly	\$0.474 hours	\$0.757 hourly	\$0.611 bourly
	gz z varge	50.0 GB : 104 usize	23.0000	040.0 CB /0 / 100 D CB CSD	64.1	at 10 Gleable	NZA	Ne	\$3,600 hourly	St 995 hourly	\$2,979 hourly	Si 070 bourly
t Extra Large	yz.ox.aiye	00.0 GB 104 Units	az voros			on to organit	EDDO D Million	No	\$2.000 hourly	\$1.630 hourly	40 eta bourly	anara noony
nge	x1.10xiage	976.0 GB 174.3 Units	04 VCPUs	1920.0 GB 360	04-1	a. To Gigabit	5000.0 Mbps	NO	the see toury	54.579 houny	\$9.613 Houriy	ST.SZS HOUNY
irge	x1.32xiarge	1952.0 GB 349 Units	25 VEPUS	3640.0 GB (2 1920.0 GB 550)	04-1	bit 20 Gigadit	10000.0 Midps	NO	\$13.338 houriy	sa isa nouny	\$19.226 nourly	\$15.046 nourly
-Memory Large	r3.large	15.25 GB 6.5 units	2 VGPUs	32,0 GB SSD	64-1	or Moderate	N/A	No	\$0.166 hourly	\$0.105 houry	\$0.29T nourly	\$0.238 hourly
-Memory Extra Large	r3.xlarge	30.5 GB 13 units	4 vGPUs	80,0 GB SSD	64-1	or Moderate	500.0 Mbps	NQ	\$0.333 hourly	\$0,209 hourly	\$0.583 hourly	\$0.428 hourly
-Memory Double Extra Large	r3.2xlarge	61.0 GB 26 units	8 vGPUs	160,0 GB SSD	64-1	or: High	1000.0 Mbps	No	\$0.655 hourly	\$0.418 hourly	\$1.045 hourly	\$0.824 nourly
-Memory Quadruple Extra Lan	ge r3.4xlarge	122.0 GB 52 units	16 vCPUs	320.0 GB SSD	64-1	biz High	2000.0 Mbps	No	\$1.330 hourly	\$0.836 hourly	\$1.944 hourly	\$1_490 hourly
-Memory Eight Extra Large	r3.8xlarge	244.0 GB 104 units	32 vCPUs	640.0 GB (2 * 320.0 GB SSD)	64-1	bit 10 Gigabit	N/A	No	\$2.660 hourly	\$1.672 hourly	\$3.500 hourly	\$1.989 hourly
Large	i2.xlarge	30.5 GB 14 units	4 vCPUs	800.0 GE SSD	64-1	or. Mocerate	500.0 Mbps	No	\$0.853 hourly	\$0.424 hourly	\$0.973 hourly	\$0.565 hourly
e Extra Large	i2.2xlarge	61.0 GB 27 units	8 vCPUs	1600.0 GB (2 * 800.0 GB SSD)	64-1	ait High	1000.0 Mbps	No	\$1.705 hourly	\$0.848 hourly	\$1.946 hourly	\$1.131 hourly
ruple Extra Large	12.4xlarge	122.0 GB 53 units	16 vCPUs	3200.0 GB (4 * 806.0 GB SSD)	64-t	bit High	2000.0 Mbps	No	\$3.410 hourly	\$1.696 hourly	\$3.891 hourly	\$2.260 hourly
Extra Large	i2.8xlarge	244.0 GB 104 units	32 vCPUs	6400.0 GB (8 * 800.0 GB SSD)	64-1	bit, 10 Gigabit	N/A	No	\$6.820 hourly	\$3.392 hourly	\$7.782 hourly	\$4.521 hourly
a Large	d2.xlarge	30.5 GB 14 units	4 vCPUs	6000.0 GE (3 * 2000.0 GE)	64-t	bit Moderate	750.0 Mbps	No	\$0.690 hourly	\$0.402 hourly	\$0.821 hourly	\$0.472 hourly
ole Extra Large	c2.2xlarge	61.0 GB 28 units	8 vCPUs	12000.0 GB (6 * 2000.0 GB)	64-1	biz High	1000.0 Mbps	No	\$1.380 hourly	\$0.804 hourly	\$1.601 hourly	\$0.885 hourly
druple Extra Large	d2.4xlarge	122.0 GB 56 units	16 vCPUs	24000.0 GB (12 * 2000.0 GB)	64-1	oit High	2000.0 Mbps	No-	\$2.760 hourly	\$1.608 hourly	\$3.062 hourly	\$1.690 hourly
t Extra Large	d2.8x large	244.0 GB 116 units	36 vCPUs	48000.0 GB (24 * 2000.0 GB)	64-t	bit 10 Gigabit	4000.0 Mbps	No	\$5.520 hourly	\$3.216 hourly	\$5.198 hourly	\$3,300 hourly
h I/O Quadruple Extra Large	hi1.4xlarge	60.5 GB 35 units	16 vCPUs	2048.0 GB (2 * 1024.0 GB SSD)	64-1	bit 10 Gigabit	N/A	No	\$3.100 hourly	\$1.698 hourly	\$3.580 hourly	\$2.260 hourly
orage Eight Extra Large	hs1.8xlarge	117.0 GB 35 units	16 vCPUs	45000.0 GB (24 * 2000.0 GB)	64-1	bit 10 Gigabit	N/A	No	\$4.600 hourly	\$2,574 hourty	\$4.931 hourly	\$2.961 hourly
eral Purpose Medium	m3.med/um	3,75 GB 3 units	1 vGPUs	4.0 GB SSD	64-1	bit Moderate	N/A	No	\$0.067 hourly	\$0.048 houriy	\$0.130 hourly	\$0.100 hourly
eral Purpose Large	m3.large	7.5 GB 6.5 units	2 vGPUs	32.0 GB SSD	64-6	Moderate	N/A	No	\$0.133 hourly	\$0.095 hourly	\$0.259 hourly	\$0.199 hourly
eral Purpose Extra Large	m3 xlarge	15.0 GB 13 units	4 vCPUs	60.0 GB (2 * 40.0 GB SSD)	64-1	bit High	500.0 Mbps	No	\$0.266 hourly	\$0.190 hourly	\$0,618 hourly	\$0.397 hourly
eral Purpose Double Extra Lar	ge m3.2xlarge	30.0 GB 26 units	8 vCPUs	160.0 GB (2 * 50.0 GB SSD)	64-1	ois High	1000.0 Mbps	No-	\$0.632 hourly	\$0.380 houny	\$1.036 hourly	\$0.793 hourly

Do choices MATTER ? r3.4xlarge instances, QR Factorization: IM by IK 30 --- Actual 22.5 \overline{S} computation + communication yield non-linear scaling 7.5 **** 0 50

17

Computation patterns

Communication Patterns

ONE-To-ONE

CONSTANT

All-to-one

BASIC Model

Collect Training Data

All-to-One DAG $time = x_1 + x_2 * \frac{input}{machines} + x_3 * \log(machines) + x_4 * (machines) + x_4 * (m$ Tree DAG

Optimal Design of Experiments Given a Linear Model

$$y_i = a_i^T x + w_i, \qquad i =$$

 λ_i - Fraction of times each experiment is run

minimize subject to

$$\operatorname{tr} \left\{ \left(\sum_{i=1}^{m} \lambda_{i} a_{i} a_{i}^{T} \right) \right\}$$
$$\lambda_{i} \in [0, 1]$$
$$\sum_{I=1}^{m} c_{i} \lambda_{i} \leq B$$

Collection of (input, machines)

 $= 1, \ldots, m$

Associate cost with each experiment

 $\left\{ x_{i}^{T}\right\} ^{-1}$

Lower variance \rightarrow Better model

Bound total cost

Number of instances

Large Least-squares solve (TIMIT) on r3.xlarge instances

CHOOSING INSTANCE TYPES

2750

8 r3.4xlarge

16 r3.2xlarge

32 r3.xlarge

0

Training RunningTime

Wait. That still seems hard!

...and what happened to the RAM?

- 300 seconds single-core (AVX2)
- 512 MB in /tmp
- I.5GB RAM
- Python, Java, Node
- S3 = Simple Storage Service. Essentially infinite RAM
- (PCI Bus is IGB/s, Memory Bus is 80GB/s)

Communication at 600MB/s per machine (same speed as SATA)

- 300 seconds single-core (AVX2)
- 512 MB in /tmp
- 1.5GB RAM
- Python, Java, Node

CLOUD FUNCTIONS ALPHA A serverless platform for building event-based microservices

Microsoft Azure

Azure Functions

Process events with a serverless code architecture

LAMBDA SCALABILITY

Compute

Data

"Most wrens are small and rather inconspicuous, except for their loud and often complex songs."


```
import pywren
import numpy as np
def addone(x):
    return x + 1
wrenexec = pywren.default_executor()
xlist = np.arange(10)
futures = wrenexec.map(addone, xlist)
print [f.result() for f in futures]
```

The output is as expected:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

THE API

future = runner.map(fn, data)

Serialize func and data Put on S3 Invoke Lambda

future.result() poll S3 unpickle and return your laptop

How expensive is **S3**? (Taking dimensionality analysis seriously, or "beyond PSPACE")

Storage Pricing (varies by region

Region:

US West (Oregon)

Standard Storage

\$

First 50 TB / month \$0.02

Next 450 TB / month

\$0.023 per GB

\$0.022 per GB

Over 500 TB / month \$0.021 per GB

r	ר)	

- Simple Storage Service
- Essentially infinite RAM
- Communication at 600MB/s per machine
- Same speed as SATA
- (PCI Bus is IGB/s, Memory Bus is 80GB/s)

CHICKEN®

COOKIES

DE

• Never discard intermediate information

1 month

43.5GB

- That's a lot of SIMD cores!
- is small

DxN

• Fits cleanly into map-reduce framework

Parallel matrix multiplication is easy when output matrix

 However when output matrix is very large it becomes very difficult or expensive to store in memory

- For example for N = 1e6 and D = 1e4
 - D x D matrix of doubles is 800 Mb
 - $N \times N$ matrix of doubles is 8 TB
- Storing 8 TB in memory traditional cluster is expensive!

-
-
1

\mathbb{N}	D	Lambdas	Runtime	Output S
50000	784	225	192s	20 GB
50000	18432	225	271s	20 GB
1.2 Millon	4096	3000	1320s	ΙΙΤΒ
1.2 Million	18432	3000	2520s	ΙΙΤΒ

$$\begin{bmatrix} A_{11} & A_{12}^T \\ A_{12} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 \\ L_{12} & L_{22} \end{bmatrix} \begin{bmatrix} L_{11}^T & L_{12}^T \\ 0 & L_{22}^T \end{bmatrix}$$
es,
$$A_{22}^{(\text{new})} = A_{22} - L_{12}L_{12}^T$$

The future is direct solves Fix a positive definite, n x n matrix AFind x such that Ax = bminimize

- Iterative methods are not fast.
- •New substrates make large-scale direct solve reachable
- •Need simpler tools and cost management
- There are algorithmic challenges in noniterative methods

$$\frac{1}{2}x^T A x - b^T x$$

- If you'd like to try Pywren visit <u>pywren.io</u>
- "Occupy the Cloud: Distributed Computing for the 99%." Eric Jonas, Qifan Pu, Symposium on Cloud Computing (SOCC). 2017.
- "Breaking Locality Accelerates Block Gauss-Seidel." Stephen Tu, Shivaram
- "Ernest: Efficient Performance Prediction for Large Scale Advanced Analytics."

https://people.eecs.berkeley.edu/~brecht/publications.html

References

Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. In Proceedings of the ACM

Venkataraman, Ashia C. Wilson, Alex Gittens, Michael I. Jordan, and Benjamin Recht. In Proceedings of the International Conference on Machine Learning (ICML). 2017.

Shivaram Venkataraman, Zongheng Yang, Michael J Franklin, Benjamin Recht, and Ion Stoica. In Proceedings of the Symposium on Networked Systems Design (NSDI). 2016.