
THE STATE OF CONTEMPORARY
COMPUTING SUBSTRATES FOR

OPTIMIZATION METHODS
Benjamin Recht

UC Berkeley

MY QUIXOTIC QUEST FOR
SUPERLINEAR ALGORITHMS

Benjamin Recht
UC Berkeley

Collaborators

Slides extracted by torturing Eric Jonas, Vaishaal Shankar,
Stephen Tu, Shivaram Venkataraman, and Ashia Wilson

The holy grail of optimization

Ax = b

x

Find such that
AFix a positive definite, n x n matrix

Linear regression/classification
Interior Point Methods

•Quadratic Programming
•Sequential Quadratic Programming
•Newton’s Method

Hard case for Nesterov
Dense case ~ bigger sparse cases

minimize 1
2x

T
Ax� b

T
x

Sum of Squares

Iterative Solvers

Ax = b

x

Find such that
AFix a positive definite, n x n matrix

complexity = (number of iterations) x (flops per iteration)

xk+1 = xk � s(Axk � b)

O

✓
L

µ
log(1/✏)

◆
O(n2)

Steepest Descent

Iterative Solvers

Ax = b

x

Find such that
AFix a positive definite, n x n matrix

complexity = (number of iterations) x (flops per iteration)

O(n)

x

(i)
k+1 = x

(i)
k �A

�1
ii (aTi xk � bi)

O

✓
n
L
max

µ
log(1/✏)

◆

Coordinate Descent
(Gauss-Seidel)

Iterative Solvers

Ax = b

x

Find such that
AFix a positive definite, n x n matrix

complexity = (number of iterations) x (flops per iteration)

⇡ O
�
n2K(A) log(1/✏)

�

direct solve complexity = O(n3)

Not sublinear in dimension….

Iterative or Direct?

Ax = b

x

Find such that
AFix a positive definite, n x n matrix

iterative complexity ⇡ O
�
n2K(A) log(1/✏)

�

direct solve complexity = O(n3)

n=60,000
b 60,000 x 10

kx� x?kF
kx?kF

= 0.58
direct solve wall clock = 111s

iterative wall clock = 127s

Are we selling ourselves
short with these crummy

iterative methods?

Why is direct faster?
iterative complexity ⇡ O

�
n2K(A) log(1/✏)

�

direct solve complexity = O(n3)

n=60,000
b 60,000 x 10

•To achieve maximum speed, data shuffling is required
•Memory bandwidth is critical
•Maybe we just need more RAM?

kx� x?kF
kx?kF

= 0.58
direct solve wall clock = 111s

iterative wall clock = 127s
Are we selling ourselves
short with these crummy

iterative methods?

I NEED MOAR RAM

n RAM Time

60,000 30GB 111s

350K 1TB 6 hours

1.2M 12TB 10 days

• Superlinear scaling is the worst.

• Memory demand growing
quadratically means more than
one computer is needed for
anything larger than 400K.

• Cubic time scaling means a lot
of cores are needed to
minimize time.

• Where can I get all of this
compute?

Time extrapolation based
on 64 cores, 2TB RAM

THE CLOUD

Cloud Computing CHOICEs

Amazon
EC2

t2.nano, t2.micro, t2.small
m4.large, m4.xlarge, m4.2xlarge,
m4.4xlarge, m3.medium, c4.large,
c4.xlarge, c4.2xlarge,
c3.large, c3.xlarge, c3.4xlarge,
r3.large, r3.xlarge, r3.4xlarge,
i2.2xlarge, i2.4xlarge, d2.xlarge
d2.2xlarge, d2.4xlarge,…

Microsoft
Azure

Basic tier : A0, A1, A2, A3, A4
Optimized Compute : D1, D2, D3, D4,
D11, D12, D13
D1v2, D2v2, D3v2, D11v2,…
Latest CPUs: G1, G2, G3, …
Network Optimized: A8, A9
Compute Intensive: A10, A11,…

n1-standard-1, ns1-standard-2, ns1-
standard-4, ns1-standard-8, ns1-
standard-16, ns1highmem-2, ns1-
highmem-4, ns1-highmem-8, n1-
highcpu-2, n1-highcpu-4, n1-highcpu-8,
n1-highcpu-16, n1-highcpu-32, f1-micro,
g1-small…

Google Cloud
Engine

TYRANNY of CHOICE

#THECLOUDISTOODAMNHARD
• What type? what

instance? What base
image?

• What is the cheapest
configuration to run my
job in 2 hours?

• How many to spin up?
What price? spot?

• wait, Wait, WAIT oh god

Do choices matter?

Ti
m

e
(s)

0

7.5

15

22.5

301 r3.8xlarge
2 r3.4xlarge
4 r3.2xlarge
8 r3.xlarge
16 r3.large

M
em

 B
W

 (G
B/

s)

0

50

100

150

200
Equal Price/Hour, Aggregate Cores QR Factorization:1M by 1K

~2x performance difference for same price

16

Ti
m

e
(s)

0

7.5

15

22.5

30

Cores

0 150 300 450 600

Actual Ideal

r3.4xlarge instances, QR Factorization:1M by 1K

17

Do choices MATTER ?

computation + communication yield non-linear scaling

Computation patterns

Time INPUT Time 1
machines

Communication Patterns

ONE-To-ONE Tree DAG All-to-one

CONSTANT LOG LINEAR

19

BASIC Model

time= x1 + x2 ∗
input

machines
+ x3 ∗ log(machines)+ x4 ∗ (machines)

Serial
Execution

Computation (linear)

Tree DAG

All-to-One DAG

Collect Training Data Fit Linear Regression

Given a Linear Model

Lower variance !
Better model

λi - Fraction of times each experiment is run

Bound total cost

yi = a

T
i x+ wi, i = 1, . . . ,m

minimize tr
n

�

Pm
i=1 �iaiaTi

��1
o

�i 2 [0, 1]
Pm

I=1 ci�i B

Optimal Design of Experiments
Collection of

(input, machines)

Associate cost with
each experiment

Number of instances

0

25

50

75

100

Machines

10 43 75 108 140

T
im

e
 p

e
r

ite

ra
tio

n
 (
s)

0

225

450

675

900

Machines

0 35 70 105 140

Predicted Actual

Large Least-squares solve (TIMIT) on r3.xlarge instances

CHOOSING INSTANCE TYPES

8 r3.4xlarge

16 r3.2xlarge

32 r3.xlarge

Time (seconds)
0 2750 5500 8250 11000

568.014

465.54

405.357

Running Time Training

Wait. That still seems hard!

…and what happened to the RAM?

• 300 seconds  
single-core (AVX2)

• 512 MB in /tmp

• 1.5GB RAM

• Python, Java, Node

AWS LAMBDA

• S3 = Simple Storage Service. Essentially infinite RAM
• Communication at 600MB/s per machine (same speed as SATA)
• (PCI Bus is 1GB/s, Memory Bus is 80GB/s)

• 300 seconds  
single-core (AVX2)

• 512 MB in /tmp

• 1.5GB RAM

• Python, Java, Node

AWS LAMBDA

LAMBDA SCALABILITY
Compute Data

“Most wrens are small and rather inconspicuous, except
for their loud and often complex songs.”

pywren

THE API

How it works

pull job from s3
download anaconda runtime

python to run code
pickle result
stick in S3

your laptop the cloud

future = runner.map(fn, data)

Serialize func and data
Put on S3
Invoke Lambda

func datadatadata

future.result()

poll S3
unpickle and return

result

How expensive is S3?
(Taking dimensionality analysis seriously, or “beyond PSPACE”)

•Simple Storage Service
•Essentially infinite RAM
•Communication at
600MB/s per machine

•Same speed as SATA
•(PCI Bus is 1GB/s,
Memory Bus is 80GB/s)

• How do algorithms change
when you have infinite
memory (through a straw)

• Never discard intermediate
information

• Parallel matrix multiplication is easy when output matrix
is small

• Fits cleanly into map-reduce framework

• That’s a lot of SIMD cores!

numpywren

D x N = D x D

N x D

+ … + = D x D

• However when output matrix is very large it becomes
very difficult or expensive to store in memory

• For example for N = 1e6 and D=1e4
• D x D matrix of doubles is 800 Mb
• N x N matrix of doubles is 8 TB

• Storing 8 TB in memory traditional cluster is expensive!

N x D

D x N =
N x N

numpywren

• Solution: Use S3 to store matrices,
stream blocks to Lambdas to
compute output matrix in parallel

N x N

� � � �

�

�

�

���

� � �

���

N D Lambdas Runtime Output Size

50000 784 225 192s 20 GB

50000 18432 225 271s 20 GB

1.2
Millon 4096 3000 1320s 11 TB

1.2
Million 18432 3000 2520s 11 TB

numpywren

• Solution: Use S3 to store matrices,
stream blocks to Lambdas to
compute output matrix in parallel

N x N

� � � �

�

�

�

���

� � �

���

Cholesky in numpywren

A11 AT

12

A12 A22

�
=

L11 0
L12 L22

�
LT
11 LT

12

0 LT
22

�

• Solution: Use S3 to store matrices,
stream blocks to Lambdas to
compute output matrix in parallel

N x N

� � � �

�

�

�

���

� � �

���

Cholesky in numpywren

A11 AT

12

A12 A22

�
=

L11 0
L12 L22

�
LT
11 LT

12

0 LT
22

�

• Solution: Use S3 to store matrices,
stream blocks to Lambdas to
compute output matrix in parallel

N x N

0 0 0�

�

�

�

���

� � �

���

Cholesky in numpywren

A11 AT

12

A12 A22

�
=

L11 0
L12 L22

�
LT
11 LT

12

0 LT
22

�

• Solution: Use S3 to store matrices,
stream blocks to Lambdas to
compute output matrix in parallel

N x N

0 0 0�

�

�

�

���

� � �

���

Cholesky in numpywren

A11 AT

12

A12 A22

�
=

L11 0
L12 L22

�
LT
11 LT

12

0 LT
22

�

L21 = A21L
�T
11

• Solution: Use S3 to store matrices,
stream blocks to Lambdas to
compute output matrix in parallel

N x N

0 0 0�

�

�

�

���

� � �

���

Cholesky in numpywren

A11 AT

12

A12 A22

�
=

L11 0
L12 L22

�
LT
11 LT

12

0 LT
22

�

A(new)
22 = A22 � L12L

T
12

L21 = A21L
�T
11

The future is direct solves

Ax = b

x

Find such that
AFix a positive definite, n x n matrix

•Iterative methods are not fast
•New substrates make large-scale direct solve reachable
•Need simpler tools and cost management
•There are algorithmic challenges in noniterative methods

minimize 1
2x

T
Ax� b

T
x

References

• If you’d like to try Pywren visit pywren.io

• “Occupy the Cloud: Distributed Computing for the 99%.” Eric Jonas, Qifan Pu,
Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. In Proceedings of the ACM
Symposium on Cloud Computing (SOCC). 2017.

• “Breaking Locality Accelerates Block Gauss-Seidel.” Stephen Tu, Shivaram
Venkataraman, Ashia C. Wilson, Alex Gittens, Michael I. Jordan, and Benjamin Recht.
In Proceedings of the International Conference on Machine Learning (ICML). 2017.

• “Ernest: Efficient Performance Prediction for Large Scale Advanced Analytics.”
Shivaram Venkataraman, Zongheng Yang, Michael J Franklin, Benjamin Recht, and Ion
Stoica. In Proceedings of the Symposium on Networked Systems Design (NSDI). 2016.

https://people.eecs.berkeley.edu/~brecht/publications.html

http://pywren.io

