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Plan of talk

Survey some known approximation algorithms and open questions for
worst case and random instances of:

* max-3SAT

* min-bisection

e 3-coloring

* unique games

e dense k-subgraph



A question to keep in mind

Does the study of algorithms that handle random

inputs help in desighing approximation algorithms for
worst case instances?



Max 3-SAT

A 3-CNF formula with 72 variables and 77z clauses

(1 Vd2 VI3 A1 V=xd3 Vald )A..
Find an assignment that maximizes the number of clauses satisfied.
A random assignment satisfies 7 /8 7z clauses in expectation.

Gives approximation ratio 7 /8 .
Achieving an approximation ratio of p>7 /8 is NP-hard [Hastad 1997, 2001].



Random max-3SAT

Each literal in input 3CNF formula chosen uniformly at random.
Approximation algorithm with ratio p for random instances:

* If it outputs an assignment, then the number of clauses satisfied by
the assighment is guaranteed to be at least p* opt.

* Allowed to say “don’t know” with probability at most 1 /2 (over
choice of random input).

No algorithm is known (or even conjectured) to achieve an
approximation ratio better than 7 /8 on random instances with 72>>7.



Random instances appear to be as difficult as
worst case instances

Max 3-SAT is NP-hard to approximate with a ratio better than 7 /8 .

There are distributions over random instances for which we do not
know how to obtain an approximation ratio better than 7 /8 .
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Some guestions:

Max 3-SAT is NP-hard to approximate with a ratio better than 7 /8 .

There are distributions over random instances for which we do not know how to
obtain an approximation ratio better than 7 /8 .

Can we prove NP-hardness for random instances? Currently, no.



Some guestions:

Max 3-SAT is NP-hard to approximate with a ratio better than 7 /8 .

There are distributions over random instances for which we do not know how to
obtain an approximation ratio better than 7 /8 .

Suppose that a problem is NP-hard to approximate within a ratio better
than p. Is there a natural (sampleable) distribution over inputs on
which it is hard to achieve an approximation ratio better than p?



Min-bisection

Partition an 7-vertex graph into two equal size parts, minimizing the
number of edges in the cut.




Min-bisection

Partition an 7-vertex graph into two equal size parts, minimizing the
number of edges in the cut.
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Known results

* Approximable within O(logz) [Racke 2008]
* For some p>1, ETH-hard to approximate [Khot 2004, 2006]

Bi-criteria approximation (allowed to output a nearly balanced cut):
« Within O(Vlogzn ) [Arora, Rao, Vazirani 2004, 2009]

* For some p>1, ETH-hard to bi-approximate [Ambuhl, Mastorlili,
Svensson 2007, 2011]
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Random instances of bisection

Random graph with 72>>7 edges.

Minimum bisection is only slightly smaller than 72/2 .

Can indeed certify this in polynomial time using a spectral algorithm:
* Random graph is nearly d-regular for d=2m/n .

 Largest eigenvalue of adjacency matrix is roughly 4.

* Second largest eigenvalue of adjacency matrix is 0(\/52’) (w.h.p.).

* Had there been a small bisection, there would have been at least two (&)
eigenvalues.

Approximation ratio nearly 1 on random instances.



Other distributions of random graphs

For almost all (sufficiently dense) graphs with a minimum bisection
significantly smaller than 72/2 , can find the minimum bisection in
polynomial time and certify its minimality [Boppana 1987]. Uses
semidefinite programming (SDP), an algorithmic technique that
extends both linear programming and spectral algorithms.

Is there a distribution over graphs for which it seems plausible that
achieving a constant factor approximation is hard?



Algorithmic connections

The current best bi-criteria approximation [Arora, Rao, Vazirani| uses
SDPs, which are used also for random instances.

The previous best (true) approximation [Feige, Krauthgamer 2000,
2002] uses the bi-criteria ones as a blackbox (at an O(logn)
multiplicative loss in the approximation ratio).

The current best (true) approximation [Racke 2008] does not use SDPs.

It is based on randomized embeddings into trees, where every edge
suffers an average load of O(logn) .
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The load on edges in a spanning tree

The cut contains:

* 2 spanning tree edges
e 3 graph edges
However, its load is 4.
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3-coloring




Min 3-coloring

Given a 3-colorable graph, legally color it with few colors.
NP-hard to 4-color [Khanna, Linial, Safra 1993, 2000].
Graphs of maximum degree & (that may depend on 7):

e Greedy coloring uses at most @41 colors.

* [Karger, Motwani, Sudan 1994, 1998]: a polynomial time algorithm

that colors graphs that satisfy the vector 3-coloring SDP relaxation,
using 0T+ (dT1/3 ) colors.
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Vector 3-coloring

vdi - unit vector for vertex 7
o e, (—\/3/2,1@ '1/3/2,1/2)
vlivl)<—1/2 if (i))€EF.

vlivlj=>—1/2 if (i))&rL.

Every 3-colorable graph is vector 3-colorable.
SDP finds a vector 3-coloring in polynomial time.

(01-1)
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Anti-geometric graphs

e nvertices placed on a dim-dimensional sphere.

* Edges connect vertices that are far
apart (inner angle above 277/3 ).

Vector 3-colorable.

Chromatic number roughly &71/3
(if vertices evenly spaced).

[Feige, Langberg, Schechtman 2002, 2004].
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Number of colors used expressed as 77

Wigderson 1982, 1983: 0.5
Blum 1989, 1990, 1994 0.375
Karger, Motwani, Sudan 1994, 1998: 0.25
Blum, Karger 1997: 0.214
Arora, Chlamtac, Charikar 2006: 0.211
Chlamtac 2007: 0.207

Kawarabayashi, Thorup 2014, 2017: 0.199

None of the above improve over @71/3
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Max 3-coloring

Given a 3-colorable graph on 72 vertices, 3-color many vertices legally.

* Min 3-coloring with 4 colors implies 3 /& approximation to
max 3-coloring.

* papproximation algorithm for max 3-coloring implies min 3-coloring
with J(logz /p ) colors (and O(1/p ) if pimproves as 7 decreases).

Known min 3-coloring approximation algorithms are derived from max
3-coloring algorithms.

Remark: for random input instances, a good approximation for max
3-coloring might not imply a good approximation for min 3-coloring.



The random planted 3-coloring model

The G¢yn,p,3 model of random 3-colorable graphs introduced by
Kucera [1977].

An alternative presentation:

e Start with host graph Z sampled from Ginp.
* Plant a random 3-coloring P.

* Remove monochromatic edges.

d=p(n—1) is the expected average degree (before planting).



Random host graph H




Planted 3-coloring P

e

'0




llegal - monochromatic edges

e

'0




Remove monochromatic edges

O




Remove colors —>G

O




The algorithmic task

The input is the graph G.
(The algorithm never sees H or P.)

Task: Find a legal 3-coloring.

G may have several legal 3-colorings. There is no requirement to
recover the planted 3-coloring P.



Random 3-colorable graphs

At sufficiently high edge density, a random 3-colorable graph is
distributed like a random graph with a planted random 3-coloring.

Such graphs can be 3-colored (w.h.p.) using a spectral algorithm [Alon,
Kahale 1994, 1997], and likewise using SDP.

In fact, planted model can be 3-colored even at lower densities (large
constant average degree).

Random instances do not seem to capture the difficulties of worst case

instances: the known algorithms perform much better on random
Instances.



A geometric random 3-colorable graph model

The host graph /Z'is a random high dimensional (anti-) geometric

graph:

e 771 vertices are scattered at random
on a dim-dimensional sphere.

* Edges connect vertices that are far
apart (inner angle above 277/3 ).

Plant a random 3-coloring.
(Monochromatic edges then removed.)




A challenge

The input is a graph & generated as above (given as an adjacency
matrix, not as an embedding on a sphere).

A legal 3-coloring can be found in polynomial time, when
dim<4.9326logn [Roee David, MSc thesis, 2012], corresponding to

A<n70.3 . (At this dimension, a geometric graph supports geometric
routing.)

Design an algorithm that works for all dimensions.
The difficulty — the host graph Z admits a vector 3-coloring.
(Several candidate algorithms exist — challenges in the analysis.)



A geometric question

Anti-geometric Z admits a vector 3-coloring:

vli are unit vectors (“/3/2'1@ '\/3/2,1/2)
ivlj<—1/2 if ({))EL.
viivly>—1/2 if (i))&~£.
Does it admit a strong vector 3-coloring:
livlj=—1/2 if (i))EL? (0,-1)

If not, may open the way to improve the &71/3 approximation ratio for
min 3-coloring.

At best, to dTe [Charikar 2002].
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Unigue games

Graph ¢ = (V, £), £ colors, a set of permutations 7w, v on [4].
Color V'so as to maximize the number of legally colored edges.
An edge (z,v) is legally colored if c(v)=mlu,v|c(u)].

UGC : for every €0 and 0>0, for sufficiently large £, it is
NP-hard to distinguish between instances that are at least 1—¢
satisfiable and instances that are at most J'satisfiable.



Random instances

Extensive research on UGC and on its implications (too much to
mention).

Random instances of unique games are approximable better than UGC.

In fact, a much stronger statement holds:

Arora, Khot, Kolla, Steurer, Tulsiani, Vishnoi 2008: Unigue games on

expanding constraint graphs are easy.
Kolla, Makarychev, Makarychev 2011: How to Play Unigue Games
Against a Semi-random Adversary: Study of Semi-random Models of

Unique Games.

35



Four semi-random models for unigue games

Generate a 1—¢&satisfiable instance by selecting:

* The graph G¢(V,£).

 Permutations 7zJ#, v so that the instance is satisfiable.
* A set £le of edges to corrupt.

* The permutations 7/ Jz,v for the corrupted edges.

Theorem: for sufficiently small £>0, if at least one of the above
selections is made at random (and the other three can be adversarial),
then there is a (randomized) polynomial time coloring algorithm for
which most edges are legally colored.

(The algorithm requires average degree above log# .)



Dense k-subgraph

* Graph & on 72 vertices, and parameter £.
* Find subgraph induced on £ vertices, of highest average degree.

NP-hard (generalizes £-clique).
* Best approximation ratios of the form 27J'.

* Currently, approximation within a ratio of 2 in quasi-polynomial time
is not ruled out.



Random model

H=GCGlk,qg planted in G=Ginp .
/'is densest #-subgraph if g>p.
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Log-density

Generative model: /=Gl4,qg planted in G=Ginp. g>p.

If average degree in A is larger than £#71/3 and average degree in G is
smaller than 7271/3, then A will have cliques of size 4, but & will not.

Can detect existence of Zif loglk (gk)>login (pn) because A will
have small induced subgraphs that & does not.

E.g., A4 atlog-density >1/3.



Bhaskara, Charikar, Chlamtac, Feige, Vijayaraghavan: Detecting high log-
densities: an 0(72 7\1/4 ) approximation for densest k-subgraph.

2010

Generative model: /=GA,q planted in G=GIn,p . g>p.

Can detect existence of Zif loglk (gk)>logln (pn) because A will have
small induced subgraphs that & does not. (E.g., A4 at log-density >1 /3 )

The use of log density was a key insight that led to improved (worst
case) ~0(nT1/4 ) approximation ratio for dense A-subgraph.
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Open question

H=Glk,q planted in G=Ginp.
pn=n10.49 k=nT10.5 gk=/70.48
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Summary

* Max 3-SAT: random instances appear to be as hard as worst case.
* Min bisection: random instances are easy.

* Min 3-coloring: random instances are easy. There are interesting
research directions concerning random anti-geometric graphs.

* Unique games: even semi-random (and quarter-random) instances
are easy.

* Dense A-subgraph: previous progress inspired by random instances.
Current obstacle for further progress manifested by random
Instances.
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