
Submodular Unsplittable Flow on Trees

Anna Adamaszek

University of Copenhagen, Denmark

13.09.2017

Joint work with Parinya Chalermsook, Alina Ene, and Andreas Wiese.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Preliminaries

Unsplittable Flow on Trees (UFP-tree)

Input:

Undirected tree T = (V ,E ) with edge capacities u : E → Z+.
Set of tasks T ; each task i ∈ T has a start vertex si ∈ V , and
end vertex ti ∈ V , a demand di ∈ Z+ and a profit wi ∈ Z+.

Feasible solution: subset of the tasks T ′ ⊆ T satisfying the
capacity constraints for each edge.

Goal: find a feasible solution maximizing the profit.

Submodular Unsplittable Flow on Trees

Generalization of UFP-tree; instead of a linear weight function w
we have a submodular objective function f : 2T → R+.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Preliminaries

Unsplittable Flow on Trees (UFP-tree)

Input:

Undirected tree T = (V ,E ) with edge capacities u : E → Z+.
Set of tasks T ; each task i ∈ T has a start vertex si ∈ V , and
end vertex ti ∈ V , a demand di ∈ Z+ and a profit wi ∈ Z+.

Feasible solution: subset of the tasks T ′ ⊆ T satisfying the
capacity constraints for each edge.

Goal: find a feasible solution maximizing the profit.

Submodular Unsplittable Flow on Trees

Generalization of UFP-tree; instead of a linear weight function w
we have a submodular objective function f : 2T → R+.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Preliminaries

Unsplittable Flow on Trees (UFP-tree)

Input:

Undirected tree T = (V ,E ) with edge capacities u : E → Z+.
Set of tasks T ; each task i ∈ T has a start vertex si ∈ V , and
end vertex ti ∈ V , a demand di ∈ Z+ and a profit wi ∈ Z+.

Feasible solution: subset of the tasks T ′ ⊆ T satisfying the
capacity constraints for each edge.

Goal: find a feasible solution maximizing the profit.

Submodular Unsplittable Flow on Trees

Generalization of UFP-tree; instead of a linear weight function w
we have a submodular objective function f : 2T → R+.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Preliminaries

A function f : 2T → R+ is submodular if
f (A) + f (B) ≥ f (A∩B) + f (A∪B) for any two subsets A,B ⊆ T .

We assume that f is given as a value oracle, i.e., we are given
access to an oracle that takes as input any set S and outputs f (S).

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Preliminaries

As the Unsplittable Flow on Trees problem is NP-hard, research is
focused on finding good approximation algorithms for it.

An α-approximation algorithm is a polynomial-time algorithm that
for any input instance finds a solution with a value within an α
factor of the value of an optimal solution.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Results

Previous results:

constant factor approximation for a path with linear objective,

O(log2 n)-approximation for a tree with linear objective,

O(log n)-approximation for a path with submodular objective.

Theorem (A.,Chalermsook, Ene, Wiese; 2016)

There is a O(k · log n) approximation for Submodular UFP on
trees, where k is the pathwidth of the tree and n is the number of
nodes in the tree.

As each tree has pathwidth O(log n), this gives an
O(log2 n)-approximation for arbitrary trees, matching the best
known result for linear objective functions.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Results

Previous results:

constant factor approximation for a path with linear objective,

O(log2 n)-approximation for a tree with linear objective,

O(log n)-approximation for a path with submodular objective.

Theorem (A.,Chalermsook, Ene, Wiese; 2016)

There is a O(k · log n) approximation for Submodular UFP on
trees, where k is the pathwidth of the tree and n is the number of
nodes in the tree.

As each tree has pathwidth O(log n), this gives an
O(log2 n)-approximation for arbitrary trees, matching the best
known result for linear objective functions.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Results

Previous results:

constant factor approximation for a path with linear objective,

O(log2 n)-approximation for a tree with linear objective,

O(log n)-approximation for a path with submodular objective.

Theorem (A.,Chalermsook, Ene, Wiese; 2016)

There is a O(k · log n) approximation for Submodular UFP on
trees, where k is the pathwidth of the tree and n is the number of
nodes in the tree.

As each tree has pathwidth O(log n), this gives an
O(log2 n)-approximation for arbitrary trees, matching the best
known result for linear objective functions.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



High-level idea

1 UFP for linear objective, and polynomially bounded capacities

reduction to intersecting instances,
partitioning the tree into paths,
geometric viewpoint: drawing of tasks as rectangles below the
capacity profile,
LP relaxation enforcing the geometric viewpoint,
rounding (randomized rounding with alteration strategy)

2 removing the ”polynomially bounded” restriction

in the geometric viewpoint we allow only a polynomial number
of placements for each task

3 allowing submodular objective function

using contention resolution (CR) scheme

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



High-level idea

1 UFP for linear objective, and polynomially bounded capacities

reduction to intersecting instances,
partitioning the tree into paths,
geometric viewpoint: drawing of tasks as rectangles below the
capacity profile,
LP relaxation enforcing the geometric viewpoint,
rounding (randomized rounding with alteration strategy)

2 removing the ”polynomially bounded” restriction

in the geometric viewpoint we allow only a polynomial number
of placements for each task

3 allowing submodular objective function

using contention resolution (CR) scheme

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



High-level idea

1 UFP for linear objective, and polynomially bounded capacities

reduction to intersecting instances,
partitioning the tree into paths,
geometric viewpoint: drawing of tasks as rectangles below the
capacity profile,
LP relaxation enforcing the geometric viewpoint,
rounding (randomized rounding with alteration strategy)

2 removing the ”polynomially bounded” restriction

in the geometric viewpoint we allow only a polynomial number
of placements for each task

3 allowing submodular objective function

using contention resolution (CR) scheme

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Reduction to intersecting instances

Intersecting instance: the path of each task contains the root of
the tree.

Lemma (Chekuri, Ene, Korula; 2009)

If there is an α-approximation algorithm for UFP-tree on
intersecting instances, there is a O(α· log n)-approximation
algorithm for arbitrary trees.
This holds also for the generalization of the problem in which the
objective function is sub-additive, i.e., f (A ∪ B) ≤ f (A) + f (B) for
any two disjoint sets A and B.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Reduction to intersecting instances

idea:
partition the tasks into
O(log n) sets; each set is a
collection of independent
intersecting instances

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Reduction to intersecting instances

idea:
partition the tasks into
O(log n) sets; each set is a
collection of independent
intersecting instances

center

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Reduction to intersecting instances

idea:
partition the tasks into
O(log n) sets; each set is a
collection of independent
intersecting instances

centers

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Reduction to intersecting instances

idea:
partition the tasks into
O(log n) sets; each set is a
collection of independent
intersecting instances

centers

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Partitioning the tree T into paths

upward path: a path p in a rooted tree T s.t. one endpoint of p is
an ancestor in T of the other endpoint

A collection of paths P = {P1, . . . ,P`} in a
rooted tree T is a K-nice splitting, if

the paths in P are edge-disjoint, upward
paths, partitioning the edges of T , and

each path in T from a leaf to the root
uses an edge of at most K paths in P.

Lemma

Let T be a tree of pathwidth k. There is a polynomial time
algorithm that constructs an O(k)-nice splitting for T .

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Partitioning the tree T into paths

upward path: a path p in a rooted tree T s.t. one endpoint of p is
an ancestor in T of the other endpoint

A collection of paths P = {P1, . . . ,P`} in a
rooted tree T is a K-nice splitting, if

the paths in P are edge-disjoint, upward
paths, partitioning the edges of T , and

each path in T from a leaf to the root
uses an edge of at most K paths in P.

Lemma

Let T be a tree of pathwidth k. There is a polynomial time
algorithm that constructs an O(k)-nice splitting for T .

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Partitioning the tree T into paths

upward path: a path p in a rooted tree T s.t. one endpoint of p is
an ancestor in T of the other endpoint

A collection of paths P = {P1, . . . ,P`} in a
rooted tree T is a K-nice splitting, if

the paths in P are edge-disjoint, upward
paths, partitioning the edges of T , and

each path in T from a leaf to the root
uses an edge of at most K paths in P.

Lemma

Let T be a tree of pathwidth k. There is a polynomial time
algorithm that constructs an O(k)-nice splitting for T .

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Partitioning the tree T into paths

Algorithm idea:

process tree edges bottom-up,
assigning colors (each color
yields one path),

an edge incident to a leaf gets a
unique color,

any other edge gets the same
color as one of its children,

the color is chosen to minimize
the maximum number of colors
on a leaf-to-root path

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Partitioning the tree T into paths

Algorithm idea:

process tree edges bottom-up,
assigning colors (each color
yields one path),

an edge incident to a leaf gets a
unique color,

any other edge gets the same
color as one of its children,

the color is chosen to minimize
the maximum number of colors
on a leaf-to-root path

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Partitioning the tree T into paths

Algorithm idea:

process tree edges bottom-up,
assigning colors (each color
yields one path),

an edge incident to a leaf gets a
unique color,

any other edge gets the same
color as one of its children,

the color is chosen to minimize
the maximum number of colors
on a leaf-to-root path

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Partitioning the tree T into paths

Algorithm idea:

process tree edges bottom-up,
assigning colors (each color
yields one path),

an edge incident to a leaf gets a
unique color,

any other edge gets the same
color as one of its children,

the color is chosen to minimize
the maximum number of colors
on a leaf-to-root path

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Partitioning the tree T into paths

Algorithm idea:

process tree edges bottom-up,
assigning colors (each color
yields one path),

an edge incident to a leaf gets a
unique color,

any other edge gets the same
color as one of its children,

the color is chosen to minimize
the maximum number of colors
on a leaf-to-root path

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Geometric viewpoint

intersecting instance of UFP on a rooted tree T ,
P = {P1, . . . ,P`} – an O(k)-nice splitting for T

We create an instance of UFP on a path P ∈ P: for each task
i ∈ T corresponding to some path pi in T , and such that
pi ∩ P 6= ∅, create a task corresponding to pi ∩ P.

Observation: For a task i and upward path P, if i uses an edge of
P then it uses the top edge of P. We can assume w.l.o.g. that
edge capacities on P are non-increasing, i.e., P is a one-sided
staircase.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Geometric viewpoint

intersecting instance of UFP on a rooted tree T ,
P = {P1, . . . ,P`} – an O(k)-nice splitting for T

We create an instance of UFP on a path P ∈ P: for each task
i ∈ T corresponding to some path pi in T , and such that
pi ∩ P 6= ∅, create a task corresponding to pi ∩ P.

Observation: For a task i and upward path P, if i uses an edge of
P then it uses the top edge of P. We can assume w.l.o.g. that
edge capacities on P are non-increasing, i.e., P is a one-sided
staircase.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Geometric viewpoint

Lemma

Consider an instance of UFP on a path P, in which all tasks use
the first edge of P. Any feasible subset of the tasks admits a
representing drawing, i.e., it can be represented as a collection of
non-overlapping rectangles drawn underneath the capacity profile,
such that each task i has a corresponding rectangle of height di
whose projection on P is the path of i .

Proof idea: order the tasks in non-increasing order with respect to
length, draw them one by one, as low as possible.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Geometric viewpoint

Lemma

Consider an instance of UFP on a path P, in which all tasks use
the first edge of P. Any feasible subset of the tasks admits a
representing drawing, i.e., it can be represented as a collection of
non-overlapping rectangles drawn underneath the capacity profile,
such that each task i has a corresponding rectangle of height di
whose projection on P is the path of i .

Proof idea: order the tasks in non-increasing order with respect to
length, draw them one by one, as low as possible.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Integer program

We have a O(k)-nice splitting of the tree T into paths P.
In the IP we will enforce that for every path P ∈ P there is a
representing drawing (capacity constraints will be
automatically satisfied).

variables:

∀i ∈ T , xi ∈ {0, 1} (xi = 1 if task i is in the solution)
∀P ∈ P, i ∈ TP , ∀h – allowed height for i , y(i , h,P) ∈ {0, 1}
(y(i , h,P) = 1 if task i can be drawn at height h for P)

IP : max
∑
i∈T

wi · xi

s.t.
∑

h−allowed for i at P

y(i , h,P) = xi ∀P ∈ P ∀i ∈ TP∑
i∈TP

∑
h−di<h′≤h

y(i , h′,P) ≤ 1 ∀P ∈ P ∀h ≤ max
e∈P

ue

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Integer program

We have a O(k)-nice splitting of the tree T into paths P.
In the IP we will enforce that for every path P ∈ P there is a
representing drawing (capacity constraints will be
automatically satisfied).

variables:

∀i ∈ T , xi ∈ {0, 1} (xi = 1 if task i is in the solution)
∀P ∈ P, i ∈ TP , ∀h – allowed height for i , y(i , h,P) ∈ {0, 1}
(y(i , h,P) = 1 if task i can be drawn at height h for P)

IP : max
∑
i∈T

wi · xi

s.t.
∑

h−allowed for i at P

y(i , h,P) = xi ∀P ∈ P ∀i ∈ TP∑
i∈TP

∑
h−di<h′≤h

y(i , h′,P) ≤ 1 ∀P ∈ P ∀h ≤ max
e∈P

ue

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Integer program

We have a O(k)-nice splitting of the tree T into paths P.
In the IP we will enforce that for every path P ∈ P there is a
representing drawing (capacity constraints will be
automatically satisfied).

variables:

∀i ∈ T , xi ∈ {0, 1} (xi = 1 if task i is in the solution)
∀P ∈ P, i ∈ TP , ∀h – allowed height for i , y(i , h,P) ∈ {0, 1}
(y(i , h,P) = 1 if task i can be drawn at height h for P)

IP : max
∑
i∈T

wi · xi

s.t.
∑

h−allowed for i at P

y(i , h,P) = xi ∀P ∈ P ∀i ∈ TP∑
i∈TP

∑
h−di<h′≤h

y(i , h′,P) ≤ 1 ∀P ∈ P ∀h ≤ max
e∈P

ue

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



LP relaxation

LP : max
∑
i∈T

wi · xi

s.t.
∑

h−allowed for i at P

y(i , h,P) = xi ∀P ∈ P ∀i ∈ TP∑
i∈TP

∑
h−di<h′≤h

y(i , h′,P) ≤ 1 ∀P ∈ P ∀h ≤ max
e∈P

ue

0 ≤ xi ≤ 1, 0 ≤ y(i , h,P) ≤ 1

Randomized rounding with alteration

selection phase: pick a subset of the tasks and determine a
drawing for them (overlapping rectangles allowed)

alteration phase: pick a subset of the selected tasks whose
corresponding rectangles do not overlap

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



LP relaxation

LP : max
∑
i∈T

wi · xi

s.t.
∑

h−allowed for i at P

y(i , h,P) = xi ∀P ∈ P ∀i ∈ TP∑
i∈TP

∑
h−di<h′≤h

y(i , h′,P) ≤ 1 ∀P ∈ P ∀h ≤ max
e∈P

ue

0 ≤ xi ≤ 1, 0 ≤ y(i , h,P) ≤ 1

Randomized rounding with alteration

selection phase: pick a subset of the tasks and determine a
drawing for them (overlapping rectangles allowed)

alteration phase: pick a subset of the selected tasks whose
corresponding rectangles do not overlap

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Selection phase

We will create a (not necessarily feasible) set S of tasks.

Fix a large constant c1.

For each task i , add i to S independently at random with
probability xi/(c1 · k).

For each task i ∈ S and path P ∈ P such that i ∈ TP , choose
a height h independently at random according to the
probability distribution y(i , h,P)/xi .

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Selection phase

We will create a (not necessarily feasible) set S of tasks.

Fix a large constant c1.

For each task i , add i to S independently at random with
probability xi/(c1 · k).

For each task i ∈ S and path P ∈ P such that i ∈ TP , choose
a height h independently at random according to the
probability distribution y(i , h,P)/xi .

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Selection phase

We will create a (not necessarily feasible) set S of tasks.

Fix a large constant c1.

For each task i , add i to S independently at random with
probability xi/(c1 · k).

For each task i ∈ S and path P ∈ P such that i ∈ TP , choose
a height h independently at random according to the
probability distribution y(i , h,P)/xi .

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Alteration phase

We will select a subset S ′ ⊆ S of the tasks such that the
corresponding rectangles are non-overlapping.

Consider the paths of P in an arbitrary order.

For each P ∈ P, let S(P) = {i ∈ S : i ∈ TP}.
Goal: choose a set of accepted tasks S ′(P) ⊆ S(P), such that
their rectangles are non-overlapping.

Order the tasks in S(P) in non-increasing order according to
their demands, breaking ties arbitrarily. Consider the tasks in
this order.

Let i be the current task. We add i to S ′(P) if its rectangle
does not overlap with any of the rectangles for the tasks we
have accepted so far.

Let S ′ = {i ∈ S : ∀P∈P:i∈TP i ∈ S ′(P)}, i.e., a task is
accepted if it was accepted for all paths.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Alteration phase

We will select a subset S ′ ⊆ S of the tasks such that the
corresponding rectangles are non-overlapping.

Consider the paths of P in an arbitrary order.

For each P ∈ P, let S(P) = {i ∈ S : i ∈ TP}.

Goal: choose a set of accepted tasks S ′(P) ⊆ S(P), such that
their rectangles are non-overlapping.

Order the tasks in S(P) in non-increasing order according to
their demands, breaking ties arbitrarily. Consider the tasks in
this order.

Let i be the current task. We add i to S ′(P) if its rectangle
does not overlap with any of the rectangles for the tasks we
have accepted so far.

Let S ′ = {i ∈ S : ∀P∈P:i∈TP i ∈ S ′(P)}, i.e., a task is
accepted if it was accepted for all paths.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Alteration phase

We will select a subset S ′ ⊆ S of the tasks such that the
corresponding rectangles are non-overlapping.

Consider the paths of P in an arbitrary order.

For each P ∈ P, let S(P) = {i ∈ S : i ∈ TP}.
Goal: choose a set of accepted tasks S ′(P) ⊆ S(P), such that
their rectangles are non-overlapping.

Order the tasks in S(P) in non-increasing order according to
their demands, breaking ties arbitrarily. Consider the tasks in
this order.

Let i be the current task. We add i to S ′(P) if its rectangle
does not overlap with any of the rectangles for the tasks we
have accepted so far.

Let S ′ = {i ∈ S : ∀P∈P:i∈TP i ∈ S ′(P)}, i.e., a task is
accepted if it was accepted for all paths.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Alteration phase

We will select a subset S ′ ⊆ S of the tasks such that the
corresponding rectangles are non-overlapping.

Consider the paths of P in an arbitrary order.

For each P ∈ P, let S(P) = {i ∈ S : i ∈ TP}.
Goal: choose a set of accepted tasks S ′(P) ⊆ S(P), such that
their rectangles are non-overlapping.

Order the tasks in S(P) in non-increasing order according to
their demands, breaking ties arbitrarily. Consider the tasks in
this order.

Let i be the current task. We add i to S ′(P) if its rectangle
does not overlap with any of the rectangles for the tasks we
have accepted so far.

Let S ′ = {i ∈ S : ∀P∈P:i∈TP i ∈ S ′(P)}, i.e., a task is
accepted if it was accepted for all paths.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Alteration phase

We will select a subset S ′ ⊆ S of the tasks such that the
corresponding rectangles are non-overlapping.

Consider the paths of P in an arbitrary order.

For each P ∈ P, let S(P) = {i ∈ S : i ∈ TP}.
Goal: choose a set of accepted tasks S ′(P) ⊆ S(P), such that
their rectangles are non-overlapping.

Order the tasks in S(P) in non-increasing order according to
their demands, breaking ties arbitrarily. Consider the tasks in
this order.

Let i be the current task. We add i to S ′(P) if its rectangle
does not overlap with any of the rectangles for the tasks we
have accepted so far.

Let S ′ = {i ∈ S : ∀P∈P:i∈TP i ∈ S ′(P)}, i.e., a task is
accepted if it was accepted for all paths.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Alteration phase

We will select a subset S ′ ⊆ S of the tasks such that the
corresponding rectangles are non-overlapping.

Consider the paths of P in an arbitrary order.

For each P ∈ P, let S(P) = {i ∈ S : i ∈ TP}.
Goal: choose a set of accepted tasks S ′(P) ⊆ S(P), such that
their rectangles are non-overlapping.

Order the tasks in S(P) in non-increasing order according to
their demands, breaking ties arbitrarily. Consider the tasks in
this order.

Let i be the current task. We add i to S ′(P) if its rectangle
does not overlap with any of the rectangles for the tasks we
have accepted so far.

Let S ′ = {i ∈ S : ∀P∈P:i∈TP i ∈ S ′(P)}, i.e., a task is
accepted if it was accepted for all paths.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Algorithm analysis

Lemma

For any path P and task i ∈ TP , it holds that
Pr[i /∈ S ′(P) | i ∈ S(P)] ≤ 2/(c1 · k).

Each selected task is rejected in the alteration phase with
probability at most 1/2.

Proof idea: If a rectangle R for the current task i overlaps with
some other rectangle, then it overlaps in the top left or the bottom
left corner of R. This allows us to check the constraints only at
two points.
The second property follows from the union bound.

Theorem

There is a O(k log n)-approximation algorithm for UFP-tree on
trees with pathwidth k for linear objective functions and
polynomially bounded edge capacities.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Algorithm analysis

Lemma

For any path P and task i ∈ TP , it holds that
Pr[i /∈ S ′(P) | i ∈ S(P)] ≤ 2/(c1 · k).

Each selected task is rejected in the alteration phase with
probability at most 1/2.

Proof idea: If a rectangle R for the current task i overlaps with
some other rectangle, then it overlaps in the top left or the bottom
left corner of R. This allows us to check the constraints only at
two points.
The second property follows from the union bound.

Theorem

There is a O(k log n)-approximation algorithm for UFP-tree on
trees with pathwidth k for linear objective functions and
polynomially bounded edge capacities.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Algorithm analysis

Lemma

For any path P and task i ∈ TP , it holds that
Pr[i /∈ S ′(P) | i ∈ S(P)] ≤ 2/(c1 · k).

Each selected task is rejected in the alteration phase with
probability at most 1/2.

Proof idea: If a rectangle R for the current task i overlaps with
some other rectangle, then it overlaps in the top left or the bottom
left corner of R. This allows us to check the constraints only at
two points.
The second property follows from the union bound.

Theorem

There is a O(k log n)-approximation algorithm for UFP-tree on
trees with pathwidth k for linear objective functions and
polynomially bounded edge capacities.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Removing restriction on edge capacities

We construct a polynomial-size set H of allowed heights, and we
restrict the LP to place the tasks only at the heights from H.

Lemma

For each feasible integral solution T ′ ⊆ T , there is a feasible
fractional solution (x , y) for the Restricted LP s.t. ∀i∈T ′ xi = 1

64 .

Idea:

Each task can be placed as high as possible below the
capacity profile (i.e., height h = mine∈P∩pi ue − di is in H).

We partition T into polynomially many size classes, and for
each size class we add a polynomial number of heights for
placing the tasks.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Removing restriction on edge capacities

We construct a polynomial-size set H of allowed heights, and we
restrict the LP to place the tasks only at the heights from H.

Lemma

For each feasible integral solution T ′ ⊆ T , there is a feasible
fractional solution (x , y) for the Restricted LP s.t. ∀i∈T ′ xi = 1

64 .

Idea:

Each task can be placed as high as possible below the
capacity profile (i.e., height h = mine∈P∩pi ue − di is in H).

We partition T into polynomially many size classes, and for
each size class we add a polynomial number of heights for
placing the tasks.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Submodular objective: CR scheme

N – a finite ground set (tasks T )

I ⊆ 2N – a family of subsets of N (integral solutions)

PI – a convex relaxation for the constraints imposed by I
(fractional solutions)

PI is down-monotone: for z , z ′ ∈ [0, 1]N , if z ≤ z ′ and
z ′ ∈ PI , then z ∈ PI
PI is solvable: one can optimize any linear function over PI in
polynomial time

R(x) – random sample of N s.t. each i ∈ N is in R(x)
independently at random with probability xi

For a set function f : 2N → R+ let F : [0, 1]N → R+ denote
the multilinear extension of f , which is defined as
F (x) := E[f (R(x))]. (f – submodular objective function)

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Submodular objective: CR scheme

N – a finite ground set (tasks T )

I ⊆ 2N – a family of subsets of N (integral solutions)

PI – a convex relaxation for the constraints imposed by I
(fractional solutions)

PI is down-monotone: for z , z ′ ∈ [0, 1]N , if z ≤ z ′ and
z ′ ∈ PI , then z ∈ PI
PI is solvable: one can optimize any linear function over PI in
polynomial time

R(x) – random sample of N s.t. each i ∈ N is in R(x)
independently at random with probability xi

For a set function f : 2N → R+ let F : [0, 1]N → R+ denote
the multilinear extension of f , which is defined as
F (x) := E[f (R(x))]. (f – submodular objective function)

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Submodular objective: CR scheme

N – a finite ground set (tasks T )

I ⊆ 2N – a family of subsets of N (integral solutions)

PI – a convex relaxation for the constraints imposed by I
(fractional solutions)

PI is down-monotone: for z , z ′ ∈ [0, 1]N , if z ≤ z ′ and
z ′ ∈ PI , then z ∈ PI
PI is solvable: one can optimize any linear function over PI in
polynomial time

R(x) – random sample of N s.t. each i ∈ N is in R(x)
independently at random with probability xi

For a set function f : 2N → R+ let F : [0, 1]N → R+ denote
the multilinear extension of f , which is defined as
F (x) := E[f (R(x))]. (f – submodular objective function)

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Submodular objective: CR scheme

N – a finite ground set (tasks T )

I ⊆ 2N – a family of subsets of N (integral solutions)

PI – a convex relaxation for the constraints imposed by I
(fractional solutions)

PI is down-monotone: for z , z ′ ∈ [0, 1]N , if z ≤ z ′ and
z ′ ∈ PI , then z ∈ PI

PI is solvable: one can optimize any linear function over PI in
polynomial time

R(x) – random sample of N s.t. each i ∈ N is in R(x)
independently at random with probability xi

For a set function f : 2N → R+ let F : [0, 1]N → R+ denote
the multilinear extension of f , which is defined as
F (x) := E[f (R(x))]. (f – submodular objective function)

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Submodular objective: CR scheme

N – a finite ground set (tasks T )

I ⊆ 2N – a family of subsets of N (integral solutions)

PI – a convex relaxation for the constraints imposed by I
(fractional solutions)

PI is down-monotone: for z , z ′ ∈ [0, 1]N , if z ≤ z ′ and
z ′ ∈ PI , then z ∈ PI
PI is solvable: one can optimize any linear function over PI in
polynomial time

R(x) – random sample of N s.t. each i ∈ N is in R(x)
independently at random with probability xi

For a set function f : 2N → R+ let F : [0, 1]N → R+ denote
the multilinear extension of f , which is defined as
F (x) := E[f (R(x))]. (f – submodular objective function)

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Submodular objective: CR scheme

N – a finite ground set (tasks T )

I ⊆ 2N – a family of subsets of N (integral solutions)

PI – a convex relaxation for the constraints imposed by I
(fractional solutions)

PI is down-monotone: for z , z ′ ∈ [0, 1]N , if z ≤ z ′ and
z ′ ∈ PI , then z ∈ PI
PI is solvable: one can optimize any linear function over PI in
polynomial time

R(x) – random sample of N s.t. each i ∈ N is in R(x)
independently at random with probability xi

For a set function f : 2N → R+ let F : [0, 1]N → R+ denote
the multilinear extension of f , which is defined as
F (x) := E[f (R(x))]. (f – submodular objective function)

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Submodular objective: CR scheme

N – a finite ground set (tasks T )

I ⊆ 2N – a family of subsets of N (integral solutions)

PI – a convex relaxation for the constraints imposed by I
(fractional solutions)

PI is down-monotone: for z , z ′ ∈ [0, 1]N , if z ≤ z ′ and
z ′ ∈ PI , then z ∈ PI
PI is solvable: one can optimize any linear function over PI in
polynomial time

R(x) – random sample of N s.t. each i ∈ N is in R(x)
independently at random with probability xi

For a set function f : 2N → R+ let F : [0, 1]N → R+ denote
the multilinear extension of f , which is defined as
F (x) := E[f (R(x))]. (f – submodular objective function)

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Submodular objective: CR scheme

Definition

For b, c ∈ [0, 1], a (b, c)-balanced CR scheme π for a polytope PI
is a procedure that for every x ∈ b · PI and A ⊆ N returns a
random set πx(A) satisfying

1 πx(A) ⊆ support(x) ∩ A and πx(A) ∈ I with probability 1,

2 for all i ∈ support(x), Pr[i ∈ πx(R(x)) | i ∈ R(x)] ≥ c .

Here support(x) := {i ∈ N : xi > 0}, b · PI := {bx : x ∈ PI}.

The LP rounding algorithm for linear objective function yields a
(1/Θ(k), 1/2)-balanced CR scheme:

selection phase – taking a random sample of 1/Θ(k) · x ,

alteration phase – makes the solution feasible, each selected
task is accepted with probability at least 1/2.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Submodular objective: CR scheme

Definition

For b, c ∈ [0, 1], a (b, c)-balanced CR scheme π for a polytope PI
is a procedure that for every x ∈ b · PI and A ⊆ N returns a
random set πx(A) satisfying

1 πx(A) ⊆ support(x) ∩ A and πx(A) ∈ I with probability 1,

2 for all i ∈ support(x), Pr[i ∈ πx(R(x)) | i ∈ R(x)] ≥ c .

Here support(x) := {i ∈ N : xi > 0}, b · PI := {bx : x ∈ PI}.

The LP rounding algorithm for linear objective function yields a
(1/Θ(k), 1/2)-balanced CR scheme:

selection phase – taking a random sample of 1/Θ(k) · x ,

alteration phase – makes the solution feasible, each selected
task is accepted with probability at least 1/2.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Submodular objective: CR scheme

Theorem (Chekuri, Vondrák, Zenklusen)

Let f : 2N → R+ be a submodular function. Let I ⊆ 2N be a
family of feasible solutions and let PI ⊆ [0, 1]N be a convex
relaxation for I that is down-monotone and solvable. Suppose that
there is a (b, c)-balanced CR scheme for PI . Then there is a
polynomial time randomized algorithm that constructs a solution
I ∈ I s.t.

E[f (I )] ≥ Θ(bc) ·max{F (x) : x ∈ PI}.

For Submodular UFP-tree on intersecting instances:

there is a (1/Θ(k), 1/2)-balanced CR scheme for PI , and

max{F (x) : x ∈ PI} = Ω(OPT)
(obvious for poly-bounded edge capacities, as the optimal
solution T ∗ is in PI ; for arbitrary edge capacities holds as
1
64 · 1T ∗ ∈ PI)

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Submodular objective: CR scheme

Theorem (Chekuri, Vondrák, Zenklusen)

Let f : 2N → R+ be a submodular function. Let I ⊆ 2N be a
family of feasible solutions and let PI ⊆ [0, 1]N be a convex
relaxation for I that is down-monotone and solvable. Suppose that
there is a (b, c)-balanced CR scheme for PI . Then there is a
polynomial time randomized algorithm that constructs a solution
I ∈ I s.t.

E[f (I )] ≥ Θ(bc) ·max{F (x) : x ∈ PI}.

For Submodular UFP-tree on intersecting instances:

there is a (1/Θ(k), 1/2)-balanced CR scheme for PI , and

max{F (x) : x ∈ PI} = Ω(OPT)
(obvious for poly-bounded edge capacities, as the optimal
solution T ∗ is in PI ; for arbitrary edge capacities holds as
1
64 · 1T ∗ ∈ PI)

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees



Submodular objective: CR scheme

Theorem

There is a polynomial time O(k) approximation algorithm for
Submodular UFP-tree on intersecting instances and, therefore, an
O(k log n) approximation for arbitrary instances, where k is the
pathwidth of the tree.

A. Adamaszek, P. Chalermsook, A. Ene, A. Wiese Submodular Unsplittable Flow on Trees


