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\Toward general classes of efficiently solvable ILPs

Integer Linear Program (ILP)

max{c’x | Ax < b,x € Z"},

where Ac Z™" bc Z™, c c Z".

Two classes of efficiently solvable ILPs

> lfn=0O(1)orm= O(1)
— Lenstra’s Algorithm. (Lenstra [1983])

» If Ais totally unimodular (TU)
— Relaxation is naturally integral.

What if minors, in absolute value, are still bounded, but not by 1?

» One can show that for any € > 0, if minors are of order n®, then ILP gets NP-hard.
(see, e.g., Burch et al. [2003], Chestnut, Z. [2016])
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\Beyond TU-ness: Bimodular integer programs

Definition: Bimodular Integer Program (BIP)

max{c"x | Ax < b,x € Z"}, where Any ILPs s.t. all minors of
Aare € {—-2,-1,0,1,2}
(i) All nx nminors of Aare € {—2,—1,0,1,2}. can easily be reduced to BIP.

(i) rank(A) = n.




\Our results

Theorem AWZ [2017]

There is a strongly polynomial algorithm to solve BIP.

Some comments and gained insights

» BIP is equivalent to “parity-constrained TU ILPs”.
» We heavily use Seymour’s TU decomposition.

» Crucial role play parity-constrained combinatorial problems, like the T-cut problem.

A useful tool: parity-constrained submodular minimization
(Grotschel, Lovasz, Schrijver [1981], Goemans and Ramakrishnan [1995]):

min{f(S) | S C N, |S| odd} .
1

\
submodular set function




\Small minors

€s
2 €1 €2 €3 €4 65 65 €7 €3 €9 B4
es Vi 11 0100O0O0O0O
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M= Va 000O0O0O1T1T1O00O0
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7 V7 000O0OT1TO0OOT1TO0O1
Largest minor of M in abs. value = 2°°P() where ocp(G) is odd cycle packing number.

If ocp(G) = 1, then M is tot. bimodular — can efficiently find max weight stable set through BIP.
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Largest minor of M in abs. value = 2°°P() where ocp(G) is odd cycle packing number.

If ocp(G) = 1, then M is tot. bimodular — can efficiently find max weight stable set through BIP.

Some optimization questions studied in context of minors

» Odd cycle packing number. Kawarabayashi & Reed [2010], Bock, Faenza, Moldenhauer & Ruiz-Vargas [2010]

» Diameter of polyhedra and efficient simplex-type algorithms. Bonifas, Di Summa, Eisenbrand, Hahnle &
Niemeier [2014], Eisenbrand & Vempala [2017]
» Computing largest minor. Summa, Eisenbrand, Faenza & Moldenhauer [2015], Nikolov [2015]

» Efficient minimization of seperable convex functions. Hochbaum & Shanthikumar [1990]
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\Our approach on a high level

max{c’x | Ax < b,x € Z"}

where A is bimodular.

X2 Y2

we assume v & 7"

Seymour’s TU decomposition

Conic parity TU problem (CPTU)
» Decompose T into base blocks (leaves).

max{¢"y | Ty <0,y € Z2,, y(S) odd},
where Tis TU,and S C [n]. » Solve CPTU by solving CPTUs on base

blocks and propagating solutions up.
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From BIP to CPTU



KPrior work by Veselov and Chirkov [2009]

Theorem Veselov and Chirkov [2009]

Let max{c'x | Ax < b,x € Z"} be aBIP, P = {x € R" | Ax < b}, v € vertices(P), and let Ax < b
be the v-tight subsystem of Ax < b.

Then each vertex of C = conv({x € Z" | Ax < b}) lies on an edge of P.
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[y=0‘(X—V)]

\_From BIP to CPTU (1)

max{c"x | Ax < b,x € Z"} =

max{c’Q 'y | AQ 'y <0,Q '(bg + y) € Z"}

X2

- - Q
A x < b
-—
- - A
A t'?ht, " b full-ran
constraints subm

A-v=>b

k square
atrix Q

X4

Y

Id
y=0
s 2
AQ =T
y=Q-(x-v)

. n
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\_From BIP to CPTU (I)
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\_From BIP to CPTU (I)

max{¢’y | Ty <0,Q7'(bg +y) € Z"} =max{&'y | Ty <0,Q"'(ba +y) € Z",y € 2"}
=max{&'y | Ty < 0,y(S) odd,y € Z"}

Given w € Z", when do we have Q~'w € Z", where Q € Z"*" with det Q € {—2,2}?

W/
Up to row and column permutations, Q~" looks as follows: Q' = - %+Z ) } R C [n]
T T
= Q'weZ" & w(S)iseven. S C[n]

= Q '(bg+y)€Z" & (bg+y)(S)iseven < y(S)odd.
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Toward simpler combinatorial
problems via Seymour’s
~ TU decomposition




\Seymour’s TU decomposition (I)

Any TU matrix can be constructed from 3 basic types of TU matrices:

(i) Network matrices (gen. of incidence matrices),

(ii) transposes of network matrices, 0
0
(iii) the following two matrices: —q

.

=i

1

=i

0
0

0 0 —1 11 1 1
-1 0 0 11 1 0 0
1 -1 0 10 1 1 0
= 9 =i 10 0 1 1
0 —1 1 11 0 0 1

using the following operations:

) _|L o
> 1—sum.L@1F{_{O FJ’

T T
> 2-sum: [L a] @ [Ollq] = {(L) ag }and

L a a 1 0 dT
» 3-sum: [fT 0 1] @3 L} g FJ = [ng ] )
>

where rows(L) + cols(L) > 4 and rows(R) + cols(R) > 4.

permuting rows/columns,

adding a row/column with at most 1

nonzero entry,
negating a row/column,
doubling a row/column,

pivoting (think of simplex pivoting).
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\Seymour’s TU decomposition (ll)

We slightly tweak Seymour’s TU decomposition to get additional properties.

Key operations that have to be considered: 1-sums, 2-sums, 3-sums, and pivots.
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\Using Seymour’s decomposition to solve CPTU

CPTU problem:  max{c’x | Tx < 0,x(S) odd, x € Z%,} .

k-sums for k € {1,2,3}

Efficient algo for CPTU wrt
Ta, Tg implies efficient algo for
CPTU wrt T¢.

Base blocks

We can solve any CPTU for
any base block matrix.

Eficient algo for CPTU wrt T,
implies efficient algo for CPTU
wrt Tg.
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Propagation aspects on
the example of 2-sums



CPTU: max{c’x | Tx < 0,x(S) odd, x € Z2,}

Assume T can be written as a 2-sum:

AWZ [2017]

J opt. sol. x* = (fj) to CPTU wrt T such
R
that b” x5 € {—1,0,1}.

In what follows, assume rows(R) < rows(L).

\_Dealing with 2-sums (1)

Assume you are given x;, with b7 x, € {—1,0,1}.
All one has to know to determine x;* is:

(i) value of b™x5 € {—1,0,1}, and

(i) parity of xg(Sg) € {even, odd}.

For each of the 6 combinations of (i) and (ii)
we construct an optimal xz.
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\_Dealing with 2-sums (Il)
L ab’"

S = S5 U Srg

Fora € {—1,0,1} and 8 € {0, 1}, we compute:

p(7,0) = max{cixg | R-xg <0, b'xg = o, xg(Sg) = B (mod 2), xg € Z7"
R >0

We incorporate these options into a problem involving L. We set:

J: components with 3 = 1

(aaﬁ): (_130) (an) (170) (_151) (071) (171)
L = |: t| -a, o , a , -a, 0 , a ]
¢’ =

[ ol | p(=1,0), (0,0) | p(1,0) p(=1,1), p(0,1) | p(1.1)]

Combined problem to find x;: [max{ETx | Ix < 0,x € Z%§®, x(S, U J) odd}]
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Conclusions




\Conclusions

Our main result

» BIPs are efficiently solvable (even in strongly poly time).

Some natural open questions (...and things | am interested in)

>
>
>
>
>

Recognition of bimodular matrices?

Solve k-modular ILPs for k = O(1), or even just determine feasibility?

Reduction of k-modular ILP to modular optimization, e.g., TU problem with x(S) =1 (mod k)?
Different approach to solve BIP not based on TU decomposition?

Derive additional structural properties of k-modular matrices.
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