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Stochastic Online Prediction	
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Observe x(1)
x(2) x(3) . . .

w(1) w(2) w(3) . . .

f(w(1), x(1)) f(w(2), x(2)) f(w(3), x(3))

Predict 

Suffer Loss 

x(t)Assume         drawn i.i.d. from unknown distribution 

R(m) =
mX

t=1

f(w(t), x(t))�
mX

t=1

f(w⇤
, x(t))Regret:  

where w⇤ = arg min
w2W

E
x

[f(w, x)]

See, e.g., S. Shalev-Shwartz, “Online Learning and Online Convex Optimization, FnT 2012. 



Problem Formalization	
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Assume:  
|f(w, x)� f(w

0
, x)|  Lkw � w

0k (Lipschitz continuous)

krf(w, x)�rf(w

0
, x)k  Kkw � w

0k (Lipschitz cont. gradients)

f(w, x) is convex in w for all x

Best possible performance (Nemirovsky & Yudin ‘83) is  
 
Achieved by many algorithms including Nesterov’s Dual Averaging 

R(m) =
mX

t=1

f(w(t), x(t))�
mX

t=1

f(w⇤
, x(t))Regret:  

E
⇥
krf(w, x)� E[rf(w, x)]k2

⇤
 �

2
(Bounded variance)

O(
p
m)



Distributed Online Prediction	
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w1(1), w1(2), w1(3), . . .

x1(1), x1(2), x1(3), . . . w2(1), w2(2), w2(3), . . .

x2(1), x2(2), x2(3), . . .

w3(1), w3(2), w3(3), . . .

x3(1), x3(2), x3(3), . . .

wn�1(1), wn�1(2), wn�1(3), . . .

xn�1(1), xn�1(2), xn�1(3), . . .
wn(1), wn(2), wn(3), . . .

xn(1), xn(2), xn(3), . . .

Regret:  
Rn(m) =

nX

i=1

m/nX

t=1

⇥
f(wi(t), xi(t))� f(w⇤

, x(t))
⇤

Communication topology  
given by graph G = (V,E)



Distributed Online Prediction	
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“No collaboration” 

Regret:  Rn(m) = nR1(
m
n )

= O(
p
nm)

With collaboration… 

Rn(m)  R1(m) = O(
p
m)

How to achieve this bound? 



Mini-batch Updates	
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[O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, JMLR 2012] 

Observe 
x(1)

x(2)

w(1)

f(w(1), x(1))

Predict 

Suffer Loss 

. . .

f(w(1), x(2)) f(w(1), x(b)) f(w(b+ 1), x(b+ 1))

w(b+ 1)

x(b+ 1)x(b)

w(1)

. . .

. . .

w(b) = w(1)

Update using average gradient 

Regret:  E[R1(m)] = O(b+
p
m+ b)

Update after mini-batch of b samples 

1

b

bX

t=1

rf(w(1), x(t))



Distributed Mini-Batch Algorithm	
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[O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, JMLR 2012] 

Distribute each mini-batch of b samples 
across n nodes 
 
Aggregate (synchronously) along a  
spanning tree (e.g., using ALLREDUCE) 

All nodes exactly compute 
1

b

bX

t=1

rf(w(1), x(t))

Collaborating has latency     samples µ

Regret:  
Rn(m) =

m
b+µX

t=1

nX

i=1

b+µ
nX

s=1

[f(wi(t), xi(t, s))� f(w⇤
, wi(t, s))]



Distributed Mini-Batch Algorithm	
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[O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, JMLR 2012] 

Distribute each mini-batch of b samples 
across n nodes 
 
Aggregate (synchronously) along a  
spanning tree (e.g., using ALLREDUCE) 

Is exact average gradient computation necessary? 
Can we achieve the same rates with asynchronous distributed algorithms? 

All nodes exactly compute 
1

b

bX

t=1

rf(w(1), x(t))

Achieve optimal regret E[Rn(m)] = O(
p
m)

with appropriate choice of b



Approximate Distributed Averaging	



ALLREDUCE is an example of an exact distributed averaging 
protocol 
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y+i = AllReduce(yi/n, i) ⌘
1

n

nX

i=1

yi 8i



Approximate Distributed Averaging	



ALLREDUCE is an example of an exact distributed averaging 
protocol 

 
More generally, consider approximate distributed averaging 
protocols 
 
which guarantee that for all i 
 
 
with latency 
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y+i = AllReduce(yi/n, i) ⌘
1

n

nX

i=1

yi 8i

y+i = DistributedAverage(yi, i)

ky+i � 1
n

nX

i=1

yik  �

µ



Gossip Algorithms	


For a doubly-stochastic matrix      with  
consider (synchronous) linear iterations 
 
 
 

Then                                           and                            if 

12 

W Wi,j > 0 , (i, j) 2 E

yi(k + 1) = Wi,iyi(k) +
nX

j=1

Wi,jyj(k)

kyi(k)� yk  �yi(k) ! y
def
= 1

n

Pn
i=1 yi(0)

k �
log

�
1
� ·

p
n ·maxj kyj(0)� yk

�

1� �2(W )

1

1� �2
= O(n)

ring expander 

1

1� �2
= O(1)

random geometric graph 

1

1� �2
= O

✓r
n

log(n)

◆



Gossip Algorithms	


For a doubly-stochastic matrix      with  
consider (synchronous) linear iterations 
 
 
 

Then                                           and                            if 
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W Wi,j > 0 , (i, j) 2 E

yi(k + 1) = Wi,iyi(k) +
nX

j=1

Wi,jyj(k)

kyi(k)� yk  �yi(k) ! y
def
= 1

n

Pn
i=1 yi(0)

k �
log

�
1
� ·

p
n ·maxj kyj(0)� yk

�

1� �2(W )

Related work: 
•  Tsitsiklis, Bertsekas, & Athans 1986 
•  Nedic & Ozdaglar 2009 
•  Ram, Nedic, & Veeravalli 2010 
•  Duchi, Agarwal, & Wainwright 2012 



Distributed Dual Averaging with Approximate 
Mini-Batches (DDA-AMB)	
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Initialize  zi(1) = 0, wi(1) = 0

For  t = 1, . . . , T
def
= d m

b+µe

gi(t) =
n

b

b/nX

s=1

rf(wi(t), xi(t, s))

zi(t+ 1) = DistributedAverage(zi(t) + gi(t), i)

Strongly convex prox function Algorithm parameters 
0 < �(t)  �(t+ 1)

wi(t+ 1) = arg min
w2W

�
hzi(t+ 1), wi+ �(t)h(w)

 



Distributed Dual Averaging with Approximate 
Mini-Batches (DDA-AMB)	
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Initialize  zi(1) = 0, wi(1) = 0

For  t = 1, . . . , T
def
= d m

b+µe

gi(t) =
n

b

b/nX

s=1

rf(wi(t), xi(t, s))

zi(t+ 1) = DistributedAverage(zi(t) + gi(t), i)

zi(t+ 1) ⇡ 1

n

nX

i=1

�
zi(t) + gi(t)

�

= z(t) +
1

b

nX

i=1

b/nX

s=1

rf(wi(t), xi(t, s))

Should give 

b samples 

μ samples 

wi(t+ 1) = arg min
w2W

�
hzi(t+ 1), wi+ �(t)h(w)

 



When do Approximate Mini-Batches Work?	
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If G is an expander, then                       and so                     . k = ⇥(log n) µ = ⇥(log n)

Latency is the same (order-wise) as aggregating along a tree. 

Theorem (Tsianos & MR): Run DDA-AMB with

k =

log

�
(1 + 2L(b+ µ))

p
n
�

1� �2(W )

iterations of gossip per mini-batch and �(t) = K +

q
t

b+µ , and

take b = m⇢
for ⇢ 2 (0, 1

2 ). Then E[Rn(m)] = O(

p
m).



Stochastic Optimization	
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Consider the problem  

Well-known that  

minimize F (w) = E
x

[f(w, x)]

subject to w 2 W

F (ŵ(m))� F (w⇤)  1

m
E[R1(m)]

ŵ(m) =
1

m

mX

t=1

w(t)where 



Distributed Stochastic Optimization	
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Accuracy                                      is guaranteed if  F (ŵi(T ))� F (w⇤)  ✏ T � 1

n
· 1

✏2

Total gossip iterations:  O
✓

1

✏2
· log n

n
· 1

1� �2(W )

◆

Agarwal & Duchi  (2011) obtain similar rates with an asynchronous  
master-worker architecture 

Corollary: Run DDA-AMB with �(t) = K +

q
t
b and

k =

log

�
(1 + 2Lb)

p
n
�

1� �2(W )

gossip iterations per mini-batch of b gradients processed across the network.

Then

F (ŵi(dm
b e))� F (w⇤

) = O(

1p
m
) = O(

1p
nT

) .



Conclusions	



•  Exact averaging is not crucial for               regret with 
distributed mini-batches 
–  Just need to ensure nodes don’t drift too far apart 

•  Current gossip bounds are worst-case in initial condition 
–  Potentially use an adaptive rule to gossip less 

•  Fully asynchronous version is straightforward extension 

•  Open problem: 
–  Does same approximate mini-batch approach extend to strongly-

convex objectives? 
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O(
p
m)


