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Stochastic Online Prediction

Predict w(1) w(2) w(3)...
Observe (1) x(2) z(3)...

Suffer Loss  f(w(1),z(1)) f(w(2),2(2)) f(w(3),z(3))

Assume z(t) drawn i.i.d. from unknown distribution

m

Regree: R(m) = 3 f(w(t), x(t) — 3 f(w", 2(t)

h t = in £, :
where w” = arg min f(w, )]

See, e.g., S. Shalev-Shwartz, “Online Learning and Online Convex Optimization, FnT 2012.



Problem Formalization

Assume: f(w, ) is convex in w for all =
If(w,z) — f(w',x)| < L||lw— v (Lipschitz continuous)
|V f(w,z) = Vfw, z)|]| < K|w—w| (Lipschitz cont. gradients)
E[|Vf(w,z) — E[Vf(w,2)]|*] <o (Bounded variance)
Regret: R(m) = flw(t). x(t) — 3 Flu”.2(t)
t=1 t=1

Best possible performance (Nemirovsky & Yudin‘83) is O(v/m)

Achieved by many algorithms including Nesterov’s Dual Averaging



Distributed Online Prediction
w1 (1), wq(2
z1(1),21(2)

), wi(3),. ..

ﬁ. | \
L 4
-
-
. |
—

1 (
,x1(3), wa (1), w2(2), wa(3),. ..

, 2
(1),%2( )7$2(3)7

Communication topology
given by graph G = (V, E)
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Distributed Online Prediction

“No collaboration” With collaboration...
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Regret: Ry, (m) = nRy (™) R,(m) < Ri(m) = O(v/m)
= O(v/nm) How to achieve this bound?
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Mini-batch Updates

[O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, JMLR 2012]

Predict w(1) w(1) .o w(b) = w(1) w(b+ 1)
Observe z(1) z(2) ... x(b) x(b+1)
Suffer Loss f(w(1),z(1))  flw(1),z(2)) ... fw(@),z®)  flwl+1),z(0+1))

\ ] |

Update after mini-batch of b samples

b
1
Update using average gradient > g Vf(w(l),z(t))
t=1

Regret: E|Ri(m)| = O(b+ vm + b)



Distributed Mini-Batch Algorithm

[O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, JMLR 2012]

Distribute each mini-batch of b samples

& g across 7 nodes

ﬂ / Aggregate (synchronously) along a
g spanning tree (e.g., using ALLREDUCE)
b

o

1
All nodes exactly compute - Z Vf(w(l),z(t))

~

Collaborating has latency 1 samples

b+u
b—|—u n

Regret: R, ( YYY ), xi(t,s)) — f(w*,wi(t,s))]

t=1 =1 s=1




Distributed Mini-Batch Algorithm

[O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, JMLR 2012]

Distribute each mini-batch of b samples

& g across 7 nodes

ﬂ / Aggregate (synchronously) along a
g spanning tree (e.g., using ALLREDUCE)
b

o

All nodes exactly compute % Z Vf(w(l),z(t))
! i t=1
J Achieve optimal regret E[R,,(m)] = O(v/m)

with appropriate choice of

Is exact average gradient computation necessary?

Can we achieve the same rates with asynchronous distributed algorithms?
9



Approximate Distributed Averaging

ALLREDUCE is an example of an exact distributed averaging
protocol

1 mn
+ — ALLREDUCE(y; /n,i) = = . Vi
v; (yi /i) = — ;y i



Approximate Distributed Averaging

ALLREDUCE is an example of an exact distributed averaging
protocol

1 mn
+ — ALLREDUCE(y; /n,i) = = . Vi
v; (yi /i) = — ;y i

More generally, consider approximate distributed averaging

protocols
;" = DISTRIBUTEDAVERAGE(y;, 1)

which guarantee that for all i

n
lyf —+> il <6
with latency 4 =1



Gossip Algorithms

For a doubly-stochastic matrix W with W, ; > 0< (i,5) € E

consider (synchronous) linear iterations

yi(k +1) = Wiy (k) + Y Wi jy;(k)
j=1

Theny;(k) > 7= 230 i(0) and [lyi(k) =7 <6 if

. log (5 - V- max; [|y;(0) — )
- 1 — X (W)
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Gossip Algorithms

For a doubly-stochastic matrix W with W, ; > 0< (i,5) € E
consider (synchronous) linear iterations

yz’(k‘|‘1) — zzyz +ZWijj

Then y;(k) — 7 = 1 LS L vi(0) and lyi(k) — 7l <46 if

log (5 - /7 - max; ||y;(0) —7|)
= 5 1 —A2(W)

Related work:

» Tsitsiklis, Bertsekas, & Athans 1986
* Nedic & Ozdaglar 2009

 Ram, Nedic, & Veeravalli 2010

* Duchi,Agarwal, & Wainwright 2012



Distributed Dual Averaging with Approximate
Mini-Batches (DDA-AMB)

Initialize 2;(1) =0,w;(1) =0

For t=1,...,T = [{2]

b/n

9i(t) = 5 > VF(wi(t). xi(t, )

2;(t + 1) = DISTRIBUTEDAVERAGE(2;(t) + g;(t), %)

w;(t + 1) = arg min {(z;(¢t + 1), w) + B(t)h(w)}

wew /

Algorithm parameters Strongly convex prox function

0<pB(t) <p(t+1)



Distributed Dual Averaging with Approximate
Mini-Batches (DDA-AMB)

Initialize 2;(1) =0,w;(1) =0
For ¢t =1,...,T = (b—l—lﬂ

ZVf w;(t), z;(t, s)) b samples

Zzi(t+1) = DISTRIBUTEDAVERAG [ samples

w; (t +7Zarg£%1]1/qv{ zi(t+1),w) + B(t)h(w)}

1
Should give z;(t+ 1) ~ - Z (2:(t) + g:(t))
i=1

)+ — ZZVf w;(t), xi(t, s))

zlsl 15



When do Approximate Mini-Batches Work!?

Theorem (Tsianos & MR): Run DDA-AMB with

log (1 +2L(b + ) Vi)
1 — Ao (W)

iterations of gossip per mini-batch and B(t) = K + and

take b = m?” for p € (0, 2). Then E[R,(m)] = O(v/m).

b+’

If G is an expander, then k& = O(logn) and so . = ©(logn).

Latency is the same (order-wise) as aggregating along a tree.



Stochastic Optimization

Consider the problem
minimize F(w)=E.|f(w,x)]

subject to w € W

Well-known that F'(w(m)) — F(w") < —E[R;(m)]

where w(m) %Zw(t)



Distributed Stochastic Optimization

Corollary: Run DDA-AMB with 8(t) = K + \f and

 log ((1+2Lb)y/n)
a 1 —A(W)

gossip iterations per mini-batch of b gradients processed across the network.
Then
F(ai([51) = F(w") = O(=) = O(=) -

vm vVnT
A x : . 1 1
Accuracy F'(w;(T)) — F(w") < e is guaranteed if T' > — - —
n e

1 1 1
Total gossip iterations: O ( o )

e n 1— (W)

Agarwal & Duchi (201 1) obtain similar rates with an asynchronous
master-worker architecture 8



Conclusions

* Exact averaging is not crucial for O(\/m) regret with
distributed mini-batches

— Just need to ensure nodes don’t drift too far apart

* Current gossip bounds are worst-case in initial condition

— Potentially use an adaptive rule to gossip less

* Fully asynchronous version is straightforward extension

* Open problem:

— Does same approximate mini-batch approach extend to strongly-
convex objectives!?



