Consensus-Based Distributed Online Prediction and Stochastic Optimization

Michael Rabbat

Joint work with Konstantinos Tsianos

$\mathcal{O}(\sqrt{m})$ Regret with Approximate Distributed Mini-Batches

Michael Rabbat

Joint work with Konstantinos Tsianos

Stochastic Online Prediction

Predict

$$w(1)$$
 $w(2)$
 $w(3)...$

 Observe
 $x(1)$
 $x(2)$
 $x(3)...$

 Suffer Loss
 $f(w(1), x(1))$
 $f(w(2), x(2))$
 $f(w(3), x(3))$

Assume x(t) drawn i.i.d. from unknown distribution

Regret:
$$R(m) = \sum_{t=1}^{m} f(w(t), x(t)) - \sum_{t=1}^{m} f(w^*, x(t))$$

where $w^* = \arg \min_{w \in \mathcal{W}} \mathbb{E}_x[f(w, x)]$

See, e.g., S. Shalev-Shwartz, "Online Learning and Online Convex Optimization, FnT 2012.³

Problem Formalization

Assume: f(w, x) is convex in w for all x

$$|f(w,x) - f(w',x)| \le L ||w - w'||$$
$$||\nabla f(w,x) - \nabla f(w',x)|| \le K ||w - w'||$$
$$\mathbb{E} \left[||\nabla f(w,x) - \mathbb{E} [\nabla f(w,x)]||^2 \right] \le \sigma^2$$

(Lipschitz continuous)(Lipschitz cont. gradients)(Bounded variance)

Regret:
$$R(m) = \sum_{t=1}^{m} f(w(t), x(t)) - \sum_{t=1}^{m} f(w^*, x(t))$$

Best possible performance (Nemirovsky & Yudin '83) is $\mathcal{O}(\sqrt{m})$

Achieved by many algorithms including Nesterov's Dual Averaging

Distributed Online Prediction

Regret:
$$R_n(m) = \sum_{i=1}^n \sum_{t=1}^{m/n} \left[f(w_i(t), x_i(t)) - f(w^*, x(t)) \right]$$

Distributed Online Prediction

"No collaboration"

Regret:
$$R_n(m) = nR_1(\frac{m}{n})$$

= $\mathcal{O}(\sqrt{nm})$

With collaboration...

 $R_n(m) \leq R_1(m) = \mathcal{O}(\sqrt{m})$ How to achieve this bound?

Mini-batch Updates

[O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, JMLR 2012]

Update using average gradient

$$\frac{1}{b}\sum_{t=1}^{b}\nabla f(w(1), x(t))$$

Regret: $\mathbb{E}[R_1(m)] = \mathcal{O}(b + \sqrt{m+b})$

Distributed Mini-Batch Algorithm

[O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, JMLR 2012]

Distribute each mini-batch of b samples across n nodes

Aggregate (synchronously) along a spanning tree (e.g., using ALLREDUCE) All nodes exactly compute $\frac{1}{b} \sum_{t=1}^{b} \nabla f(w(1), x(t))$

Collaborating has latency μ samples

Regret:
$$R_n(m) = \sum_{t=1}^{\frac{m}{b+\mu}} \sum_{i=1}^n \sum_{s=1}^{\frac{b+\mu}{n}} [f(w_i(t), x_i(t, s)) - f(w^*, w_i(t, s))]$$

Distributed Mini-Batch Algorithm

[O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, JMLR 2012]

Distribute each mini-batch of b samples across n nodes

Aggregate (synchronously) along a spanning tree (e.g., using ALLREDUCE) All nodes exactly compute $\frac{1}{b} \sum_{t=1}^{b} \nabla f(w(1), x(t))$

Achieve optimal regret $\mathbb{E}[R_n(m)] = \mathcal{O}(\sqrt{m})$ with appropriate choice of b

Is exact average gradient computation necessary? Can we achieve the same rates with asynchronous distributed algorithms?

Approximate Distributed Averaging

ALLREDUCE is an example of an *exact* distributed averaging protocol

$$y_i^+ = \text{AllReduce}(y_i/n, i) \equiv \frac{1}{n} \sum_{i=1}^n y_i \quad \forall i$$

Approximate Distributed Averaging

ALLREDUCE is an example of an *exact* distributed averaging protocol

$$y_i^+ = \text{AllReduce}(y_i/n, i) \equiv \frac{1}{n} \sum_{i=1}^n y_i \quad \forall i$$

More generally, consider approximate distributed averaging protocols

$$y_i^+ = \text{DistributedAverage}(y_i, i)$$

which guarantee that for all i

$$||y_i^+ - \frac{1}{n}\sum_{i=1}^n y_i|| \le \delta$$

m

with latency μ

Gossip Algorithms

For a doubly-stochastic matrix W with $W_{i,j} > 0 \Leftrightarrow (i,j) \in E$ consider (synchronous) linear iterations

$$y_i(k+1) = W_{i,i}y_i(k) + \sum_{j=1}^n W_{i,j}y_j(k)$$

Then
$$y_i(k) \to \overline{y} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n y_i(0) \text{ and } \|y_i(k) - \overline{y}\| \le \delta$$
 if
 $k \ge \frac{\log\left(\frac{1}{\delta} \cdot \sqrt{n} \cdot \max_j \|y_j(0) - \overline{y}\|\right)}{1 - \lambda_2(W)}$

Gossip Algorithms

For a doubly-stochastic matrix W with $W_{i,j} > 0 \Leftrightarrow (i,j) \in E$ consider (synchronous) linear iterations

$$y_i(k+1) = W_{i,i}y_i(k) + \sum_{j=1}^n W_{i,j}y_j(k)$$

Then
$$y_i(k) \to \overline{y} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n y_i(0) \text{ and } \|y_i(k) - \overline{y}\| \le \delta$$
 if
 $k \ge \frac{\log\left(\frac{1}{\delta} \cdot \sqrt{n} \cdot \max_j \|y_j(0) - \overline{y}\|\right)}{1 - \lambda_2(W)}$

Related work:

- Tsitsiklis, Bertsekas, & Athans 1986
- Nedic & Ozdaglar 2009
- Ram, Nedic, & Veeravalli 2010
- Duchi, Agarwal, & Wainwright 2012

Distributed Dual Averaging with Approximate Mini-Batches (DDA-AMB)

Initialize
$$z_i(1) = 0, w_i(1) = 0$$

For $t = 1, ..., T \stackrel{\text{def}}{=} \lceil \frac{m}{b+\mu} \rceil$
 $g_i(t) = \frac{n}{b} \sum_{s=1}^{b/n} \nabla f(w_i(t), x_i(t, s))$
 $z_i(t+1) = \text{DISTRIBUTEDAVERAGE}(z_i(t) + g_i(t), i)$
 $w_i(t+1) = \arg \min_{w \in \mathcal{W}} \{ \langle z_i(t+1), w \rangle + \beta(t)h(w) \}$
Algorithm parameters
 $0 < \beta(t) \le \beta(t+1)$
Strongly convex prox function

Distributed Dual Averaging with Approximate Mini-Batches (DDA-AMB)

Initialize $z_i(1) = 0, w_i(1) = 0$ For $t = 1, \ldots, T \stackrel{\text{def}}{=} \lceil \frac{m}{b+\mu} \rceil$ $g_i(t) = \frac{n}{b} \sum_{i=1}^{b/n} \nabla f(w_i(t), x_i(t, s))$ b samples $z_{i}(t+1) = \text{DISTRIBUTEDAVERAGE}(z_{i}(t) + g_{i}(t), i)$ $w_{i}(t+1) = \arg\min_{w \in \mathcal{W}} \left\{ \langle z_{i}(t+1), w \rangle + \beta(t)h(w) \right\}$ Should give $z_{i}(t+1) \approx \frac{1}{n} \sum_{i=1}^{n} \left(z_{i}(t) + g_{i}(t) \right)$ μ samples $=\overline{z}(t) + \frac{1}{b} \sum_{i=1}^{n} \sum_{i=1}^{b/n} \nabla f(w_i(t), x_i(t, s))$ 15

When do Approximate Mini-Batches Work?

Theorem (Tsianos & MR): Run DDA-AMB with

$$k = \frac{\log\left((1+2L(b+\mu))\sqrt{n}\right)}{1-\lambda_2(W)}$$

iterations of gossip per mini-batch and $\beta(t) = K + \sqrt{\frac{t}{b+\mu}}$, and take $b = m^{\rho}$ for $\rho \in (0, \frac{1}{2})$. Then $\mathbb{E}[R_n(m)] = \mathcal{O}(\sqrt{m})$.

If G is an expander, then $k = \Theta(\log n)$ and so $\mu = \Theta(\log n)$. Latency is the same (order-wise) as aggregating along a tree.

Stochastic Optimization

Consider the problem

minimize $F(w) = \mathbb{E}_x[f(w, x)]$ subject to $w \in \mathcal{W}$

Well-known that
$$F(\hat{w}(m)) - F(w^*) \leq \frac{1}{m} \mathbb{E}[R_1(m)]$$

where
$$\hat{w}(m) = \frac{1}{m} \sum_{t=1}^{m} w(t)$$

Distributed Stochastic Optimization

Corollary: Run DDA-AMB with $\beta(t) = K + \sqrt{\frac{t}{b}}$ and

$$k = \frac{\log\left((1+2Lb)\sqrt{n}\right)}{1-\lambda_2(W)}$$

gossip iterations per mini-batch of b gradients processed across the network. Then

$$F(\hat{w}_i(\lceil \frac{m}{b} \rceil)) - F(w^*) = \mathcal{O}(\frac{1}{\sqrt{m}}) = \mathcal{O}(\frac{1}{\sqrt{nT}}) .$$

Accuracy $F(\hat{w}_i(T)) - F(w^*) \le \epsilon$ is guaranteed if $T \ge \frac{1}{n} \cdot \frac{1}{\epsilon^2}$

Total gossip iterations:
$$\mathcal{O}\left(\frac{1}{\epsilon^2} \cdot \frac{\log n}{n} \cdot \frac{1}{1 - \lambda_2(W)}\right)$$

Agarwal & Duchi (2011) obtain similar rates with an asynchronous master-worker architecture

Conclusions

- Exact averaging is not crucial for $\mathcal{O}(\sqrt{m})~\text{regret}$ with distributed mini-batches
 - Just need to ensure nodes don't drift too far apart
- Current gossip bounds are worst-case in initial condition
 - Potentially use an adaptive rule to gossip less
- Fully asynchronous version is straightforward extension
- Open problem:
 - Does same approximate mini-batch approach extend to stronglyconvex objectives?