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A linear program (LP) is an optimization problem 
of the form 
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A mixed-integer program (MIP) is an optimization 
problem of the form 
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Three Important Characteristics 

 Broadly applicable 

 

 Computationally demanding 

 

 Solutions have significant financial 
value 
◦ Can be worth millions of $’s 
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 Accounting 

 Advertising 

 Agriculture 

 Airlines 

 ATM provisioning 

 Compilers 

 Defense 

 Electrical power  

 Energy  

 Finance  

 Food service 

 Forestry 

 Gas distribution 

 Government 

 Internet applications 

 Logistics/supply chain  

 Medical 

 Mining 

 National research labs 

 Online dating 

 Portfolio management 

 Railways 

 Recycling 

 Revenue management 

 Semiconductor 

 Shipping 

 Social networking 

 Sourcing 

 Sports betting 

 Sports scheduling 

 Statistics 

 Steel Manufacturing 

 Telecommunications 

 Transportation 

 Utilities 

 Workforce scheduling  
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Customer Applications 
(Q4 2011-Q3 2012)  
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Linear Programming 

Simplex solution path 

Interior-point central path 

o Predictor 

o Corrector 

Optimum 
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 LP relaxation at root node:   

 18 hours 

 Branch-and-bound 

 1710 nodes, first feasible 

 3.7% gap 

 Time:  92 days!! 

 MIP does not appear to be difficult:  LP can 

be a bottleneck 

Example 1:  LP still can be HARD 

LP Mostly a Solved Problem 
SGM:  Schedule Generation Model 

157323 rows, 182812 columns 
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MIP solution framework:   
LP based Branch-and-Bound 

G 
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P 

Root 

Integer 

Integer 

Infeas 

Lower Bound 

Upper Bound 

Remarks: 
  (1) GAP = 0   Proof of optimality 
  (2) In practice:  good quality solution often enough 

Solve LP relaxation: 

  v=3.5 (fractional) 
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MIP Definitely Not a Solved Problem 

A customer model:  44 constraints, 51 variables, maximization 
                                    51 general integer variables (and no bounds) 

Branch-and-bound:   Initial integer solution      -2186.0 
                              Initial upper bound           -1379.4 

…after 1.4 days, 32,000,000 B&B nodes, 5.5 Gig tree 
              Integer solution and bound:  UNCHANGED 
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Financial Impact 

 Example: NFL 
◦ Profitability of a $9B company heavily 

dependent on the solution to one 
extremely difficult MIP model 

 

 Many other examples 
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Throw Hardware at the Problem? 

 The landscape… 
◦ Broadly applicable 

◦ Computationally demanding 

◦ Solutions have significant financial value 

 Plus… 
◦ “Obvious” sources of parallelism in the algorithms 

 Yet… 
◦ Parallel computing has had a very limited impact 

in practice 
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Parallelism in Linear 
Programming 
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Simplex Steps 

 Maintain a basis B 

◦ And a basis factorization B=LU 

 In each iteration: 

◦ Choose entering variable 

◦ Compute direction (Dx = B
-1
 A

*j
) 

◦ Compute step length 

◦ Update basis and basis factor 

 Periodically recompute B=LU 
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Barrier Steps 

 Pre-compute a fill-reducing ordering for 

A -1
 A’  

 In each iteration: 

◦ Form A -1
 A’ 

◦ Factor A -1
 A’ = L D L’ 

◦ Solve L D L’ x = b 

◦ A few Ax and A’x computations 

◦ A bunch of vector stuff  

 Perform a crossover to a basic solution  
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For Any LP/MIP 

 Presolve step to reduce the size of 

the model 

◦ Remove fixed variables 

◦ Remove trivially satisfied constraints 

◦ Use equalities to eliminate variables 

◦ Etc. 
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Comparison of Steps 

 Iterations 
◦ Simplex: cheap, thousands-millions 
◦ Barrier: expensive, several dozen 

 Sparse linear algebra 
◦ Simplex: triangular solves on a very sparse, constantly 

changing matrix 
◦ Barrier: Cholesky factorization of a matrix with static 

structure 

 Parallelism 
◦ Simplex: no general-purpose parallel algorithm 
◦ Barrier: Cholesky factorization, triangular solves, 

matrix-vector multiplies, ordering, … 
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Performance Comparison 

 Run a set of 1242 LP test models 

◦ Public benchmarks and customer models 

 Exclude those that are… 

◦ Too easy: solved in less than 0.01 seconds by both 

methods 

◦ Too hard: not solved in 2 hours by either method 

◦ Leaves 809 models 

 Compute geometric mean of runtime ratios 
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Performance Comparison 

 Results: 

 Gurobi 5.6, quad-core i7-3770K processor 

 Barrier run on 4 cores, includes crossover 
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   Wins  GeoMean 

Dual simplex 541  1.00 

Barrier  483  0.95 

 Simplex wins more often, but barrier is 5% 

faster on average 
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Exclude Simpler Models 

 What if you change the ‘too easy’ 

threshold…? 
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           Wins   Bar/Dual 

MinTime Dual  Barrier GeoMean 

>0.01s 541  483  0.95 

>0.1s  275  298  0.70 

>1s  121  207  0.49 

 As models get more difficult, barrier pulls 

ahead 

 Not on all models, though 
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Peak Performance 

 Peak DP Gflops, from 2001 to today: 
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Parallel Barrier Performance 

 Parallel speedups 
◦ Models that take > 1s to solve 
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Barrier Runtime Breakdown 

 For models that require more than 1s: 
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Barrier Runtime Breakdown 

 As models get harder (P=4)… 
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Concurrent Optimization 

 Run both algorithms, stop when the 

first one finishes 

 Results: 

 Gurobi 5.6, quad-core i7-3770K 

 Dual simplex on 1 core, barrier on 3 cores 

 Models that take >1s 
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    GeoMean 

Dual simplex  1.00 

Barrier   0.49 

Concurrent   0.38 
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Parallelism in Mixed-Integer 
Programming 
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 Subtrees in branch-and-bound are 
independent 

MIP – Embarrassingly Parallel? 

 Trivial to 
distribute them 
among processors 



Parallel MIP – Reality 

 MIPLIB2010 test set: 
◦ Benchmark subset: 87 models, not too easy, not too hard 
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Parallel Speedup By Model (P=12) 
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A Bit of Noise Mixed In 

 Random noise plays a big role 

 Example - model 60WA01: 
◦ Default settings:  509s 

◦ Seed=2:   23s 

 22X speedup from changing the 
random number seed 

 

29 © 2013 Gurobi Optimization 



30 © 2013 Gurobi Optimization 

Parallel Speedup By Model (P=12) 
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Fraction of runtime at root 
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More Accurate Picture of Search Tree 



Root Computations 

 What happens at the root node? 
◦ Presolve 
◦ Root relaxation solution 
◦ Cutting planes 
◦ Heuristics 
◦ Symmetry detection 
◦ Initial branch variable selection 
◦ … 

 Basic motivation 
◦ Better to discover something at the root than 

rediscover it at every node 
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Example – Cutting Planes 

 Identify constraints that cut off continuous 
solutions but don’t cut off integer solutions 
◦ Simple example: clique cut (binary variables) 

 x + y <= 1, y + z <= 1, x + z <= 1 

 Feasible relaxation solution: x=y=z=0.5 

 Implied: x + y + z <= 1 

 Add redundant constraints to the model to 
tighten the relaxation 
◦ 13 different cutting plane types in Gurobi 
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Example – Symmetry 

 Identify symmetry in the model 
◦ Given a MIP 

 min {c’x | Ax <= b} 

◦ Find all automorphisms: 

 Row permutation a 

 Column permutation b 

 (b, a)(A) = A, a(c) = c, b(b) = b 

 During search, prune subtrees that are 
isomorphic to already explored subtrees 
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 Test environment 
◦ Internal test set (~6000 models) 

◦ Solvable by at least one version 

◦ At least one version takes > 100 seconds 

◦ Geometric means speedup 

◦ P=4* 

 Version-to-version improvements 
◦ Gurobi 1.0 -> 2.0:  2.4X 

◦ Gurobi 2.0 -> 3.0:  2.2X (5.1X) 

◦ Gurobi 3.0 -> 4.0:  1.3X (6.6X) 

◦ Gurobi 4.0 -> 5.0:  2.0X (12.8X) 

◦ Gurobi 5.0 -> 5.5:  1.3X (16.4X) 

◦ Gurobi 5.5 -> 5.6:   1.3X (20.9X)** 

 
*p=4 vs. p=1 for V5.1 – 1.9X 

**Approximately 2x per year 

MIP Speedup 2009-Present 
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The Nature of the Improvements 

 MIP improvements generally reduce the 
number of nodes explored 
◦ Speed of processing branch-and-bound nodes 

hasn’t changed much over the years 

◦ Improvements often increase the time spent at 
the root node 

 Consequence 
◦ Better MIP algorithms -> fewer opportunities for 

parallelism 
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Concurrent MIP 

 Same idea as for LP: 
◦ Apply different algorithms on different 

processors 
◦ First one that finishes wins 

 For MIP: 
◦ Consider different strategies rather than 

different algorithms 
 More/less aggressive cuts 
 More/less aggressive heuristics 
 Different branch variable selection 
 More/less aggressive presolve 

◦ Most effective strategy we’ve found so far… 
 Different random number seeds 
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Concurrent MIP 

 MIPLIB2010 test set: 
◦ Models that require >100s 

◦ Different random number seeds on each instance 
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Distributed MIP 

 Not all is lost 

 Still plenty of 
models with large 
search trees 

 Simple distributed 
scheme 
sometimes works 
well 

 



Distributed MIP 

 Parallel speedups, versus a single 
machine 
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Conclusions 

 Significant demand for performance 
◦ The data is there 

◦ The money is there 

 Despite “obvious” sources of 
parallelism, parallel computing 
continues to play only a modest role 
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