Parallelism in Linear and Mixed Integer Programming

Ed Rothberg

Problem Statement – LP

A *linear program* (LP) is an optimization problem of the form

$$\begin{array}{ll} Minimize & c^T x \\ Subject \ to & Ax = b \\ & l \leq x \leq u \end{array}$$

Problem Statement – MIP

A *mixed-integer program* (MIP) is an optimization problem of the form

 $\begin{array}{ll} Minimize & c^T x \\ Subject \ to & Ax = b \\ & l \leq x \leq u \\ \\ \text{some or all } x_j \ \text{integer} \end{array}$

Three Important Characteristics

- Broadly applicable
- Computationally demanding
- Solutions have significant financial value
 - Can be worth millions of \$'s

Customer Applications

(Q4 2011–Q3 2012)

- Accounting
- Advertising
- Agriculture
- Airlines
- ATM provisioning
- Compilers
- Defense
- Electrical power
- Energy
- Finance
- Food service
- Forestry
- Gas distribution
- Government
- Internet applications
- Logistics/supply chain
- Medical
- Mining

- National research labs
- Online dating
- Portfolio management
- Railways
- Recycling
- Revenue management
- Semiconductor
- Shipping
- Social networking
- Sourcing
- Sports betting
- Sports scheduling
- Statistics
- Steel Manufacturing
- Telecommunications
- Transportation
- Utilities
- Workforce scheduling

Linear Programming

LP Mostly a Solved Problem

SGM: Schedule Generation Model 157323 rows, 182812 columns

LP relaxation at root node:

- 18 hours
- Branch-and-bound
 - 1710 nodes, first feasible
 - 3.7% gap
 - Time: 92 days!!

Image: MIP does not appear to be difficult: LP can be a bottleneck

MIP solution framework: LP based Branch-and-Bound

MIP Definitely Not a Solved Problem

A customer model: 44 constraints, 51 variables, maximization 51 general integer variables (*and no bounds*)

Branch-and-bound: Initial integer solution -2186.0 Initial upper bound -1379.4 ...after 1.4 days, 32,000,000 B&B nodes, 5.5 Gig tree Integer solution and bound: UNCHANGED

Financial Impact

Example: NFL

 Profitability of a \$9B company heavily dependent on the solution to one extremely difficult MIP model

Many other examples

Throw Hardware at the Problem?

The landscape...

- Broadly applicable
- Computationally demanding
- Solutions have significant financial value
- Plus...
 - "Obvious" sources of parallelism in the algorithms
- Yet...
 - Parallel computing has had a very limited impact in practice

Parallelism in Linear Programming

Simplex Steps

- Maintain a basis B
 - And a basis factorization B=LU
- In each iteration:
 - Choose entering variable
 - Compute direction ($\Delta x = B^{-1} A_{*j}$)
 - Compute step length
 - Update basis and basis factor
- Periodically recompute B=LU

Barrier Steps

- Pre-compute a fill-reducing ordering for $A \theta^{-1} A'$
- In each iteration:
 - Form $A \theta^{-1} A'$
 - Factor $A \theta^{-1} A' = L D L'$
 - Solve L D L' x = b
 - A few *Ax* and *A'x* computations
 - A bunch of vector stuff
- Perform a crossover to a basic solution

For Any LP/MIP

- Presolve step to reduce the size of the model
 - Remove fixed variables
 - Remove trivially satisfied constraints
 - Use equalities to eliminate variables
 - Etc.

Comparison of Steps

Iterations

- Simplex: cheap, thousands-millions
- Barrier: expensive, several dozen
- Sparse linear algebra
 - Simplex: triangular solves on a very sparse, constantly changing matrix
 - Barrier: Cholesky factorization of a matrix with static structure

Parallelism

- Simplex: no general-purpose parallel algorithm
- Barrier: Cholesky factorization, triangular solves, matrix-vector multiplies, ordering, ...

Performance Comparison

- Run a set of 1242 LP test models
 - Public benchmarks and customer models
- Exclude those that are...
 - **Too easy**: solved in less than 0.01 seconds by both methods
 - **Too hard**: not solved in 2 hours by either method
 - Leaves 809 models
- Compute geometric mean of runtime ratios

Performance Comparison

Results:

Gurobi 5.6, quad-core i7-3770K processor Barrier run on 4 cores, includes crossover

	Wins	GeoMean
Dual simplex	541	1.00
Barrier	483	0.95

Simplex wins more often, but barrier is 5% faster on average

Exclude Simpler Models

What if you change the 'too easy' threshold...?

Wins			Bar/Dual
MinTime	Dual	Barrier	GeoMean
>0.01s	541	483	0.95
>0.1s	275	298	0.70
>1s	121	207	0.49

- As models get more difficult, barrier pulls ahead
 - Not on all models, though

Peak Performance

Peak DP Gflops, from 2001 to today:

Parallel Barrier Performance

Parallel speedups

• Models that take > 1s to solve

Barrier Runtime Breakdown

For models that require more than 1s:

Barrier Runtime Breakdown

As models get harder (P=4)...

Concurrent Optimization

- Run both algorithms, stop when the first one finishes
- Results:

Gurobi 5.6, quad-core i7-3770K Dual simplex on 1 core, barrier on 3 cores Models that take >1s

Dual simplex	1.00
Barrier	0.49
Concurrent	0.38

GeoMean

Parallelism in Mixed-Integer Programming

MIP – Embarrassingly Parallel?

- Subtrees in branch-and-bound are independent
- Trivial to distribute them among processors

Parallel MIP - Reality

MIPLIB2010 test set:

• Benchmark subset: 87 models, not too easy, not too hard

Parallel Speedup By Model (P=12)

OPTIMIZATION

A Bit of Noise Mixed In

- Random noise plays a big role
- Example model *60WA01*:
 - Default settings: 509s
 - *Seed=2*: 23s
- 22X speedup from changing the random number seed

Parallel Speedup By Model (P=12)

OPTIMIZATION

More Accurate Picture of Search Tree

Root Computations

What happens at the root node?

- Presolve
- Root relaxation solution
- Cutting planes
- Heuristics
- Symmetry detection
- Initial branch variable selection

· ·

Basic motivation

 Better to discover something at the root than rediscover it at every node

Example – Cutting Planes

- Identify constraints that cut off continuous solutions but don't cut off integer solutions
 - Simple example: clique cut (binary variables)
 - $x + y \le 1$, $y + z \le 1$, $x + z \le 1$
 - Feasible relaxation solution: x=y=z=0.5
 - Implied: x + y + z <= 1
- Add redundant constraints to the model to tighten the relaxation
 - 13 different cutting plane types in Gurobi

Example – Symmetry

- Identify symmetry in the model
 - Given a MIP
 - min {c'x | Ax <= b}
 - Find all *automorphisms*:
 - Row permutation α
 - Column permutation β
 - $(\beta, \alpha)(A) = A, \alpha(c) = c, \beta(b) = b$
- During search, prune subtrees that are isomorphic to already explored subtrees

MIP Speedup 2009–Present

Test environment

- Internal test set (~6000 models)
- Solvable by at least one version
- At least one version takes > 100 seconds
- Geometric means speedup
- P=4*

Version-to-version improvements

- Gurobi 1.0 -> 2.0: 2.4X
 Gurobi 2.0 -> 3.0: 2.2X (5.1X)
- Gurobi 3.0 -> 4.0:
 1.3X (6.6X)
- Gurobi 4.0 -> 5.0: 2.0X (12.8X)
- Gurobi 5.0 -> 5.5:
 1.3X (16.4X)
- Gurobi 5.5 -> 5.6: 1.3X (20.9X)**

*p=4 vs. p=1 for V5.1 - 1.9X **Approximately 2x per year

The Nature of the Improvements

- MIP improvements generally reduce the number of nodes explored
 - Speed of processing branch-and-bound nodes hasn't changed much over the years
 - Improvements often increase the time spent at the root node

Consequence

 Better MIP algorithms -> fewer opportunities for parallelism

Concurrent MIP

Same idea as for LP:

- Apply different algorithms on different processors
- First one that finishes wins
- For MIP:
 - Consider different strategies rather than different algorithms
 - More/less aggressive cuts
 - More/less aggressive heuristics
 - Different branch variable selection
 - More/less aggressive presolve
 - Most effective strategy we've found so far...
 - Different random number seeds

Concurrent MIP

MIPLIB2010 test set:

- Models that require >100s
- Different random number seeds on each instance

Distributed MIP

- Not all is lost
- Still plenty of models with large search trees
- Simple distributed scheme sometimes works well

Distributed MIP

Parallel speedups, versus a single machine

Conclusions

Significant demand for performance

- The data is there
- The money is there
- Despite "obvious" sources of parallelism, parallel computing continues to play only a modest role

