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A linear program (LP) is an optimization problem 
of the form 
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Problem Statement - MIP 
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

A mixed-integer program (MIP) is an optimization 
problem of the form 
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Three Important Characteristics 

 Broadly applicable 

 

 Computationally demanding 

 

 Solutions have significant financial 
value 
◦ Can be worth millions of $’s 
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 Accounting 

 Advertising 

 Agriculture 

 Airlines 

 ATM provisioning 

 Compilers 

 Defense 

 Electrical power  

 Energy  

 Finance  

 Food service 

 Forestry 

 Gas distribution 

 Government 

 Internet applications 

 Logistics/supply chain  

 Medical 

 Mining 

 National research labs 

 Online dating 

 Portfolio management 

 Railways 

 Recycling 

 Revenue management 

 Semiconductor 

 Shipping 

 Social networking 

 Sourcing 

 Sports betting 

 Sports scheduling 

 Statistics 

 Steel Manufacturing 

 Telecommunications 

 Transportation 

 Utilities 

 Workforce scheduling  
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Customer Applications 
(Q4 2011-Q3 2012)  
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Linear Programming 

Simplex solution path 

Interior-point central path 

o Predictor 

o Corrector 

Optimum 
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 LP relaxation at root node:   

 18 hours 

 Branch-and-bound 

 1710 nodes, first feasible 

 3.7% gap 

 Time:  92 days!! 

 MIP does not appear to be difficult:  LP can 

be a bottleneck 

Example 1:  LP still can be HARD 

LP Mostly a Solved Problem 
SGM:  Schedule Generation Model 

157323 rows, 182812 columns 
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MIP solution framework:   
LP based Branch-and-Bound 

G 
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P 

Root 

Integer 

Integer 

Infeas 

Lower Bound 

Upper Bound 

Remarks: 
  (1) GAP = 0   Proof of optimality 
  (2) In practice:  good quality solution often enough 

Solve LP relaxation: 

  v=3.5 (fractional) 
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MIP Definitely Not a Solved Problem 

A customer model:  44 constraints, 51 variables, maximization 
                                    51 general integer variables (and no bounds) 

Branch-and-bound:   Initial integer solution      -2186.0 
                              Initial upper bound           -1379.4 

…after 1.4 days, 32,000,000 B&B nodes, 5.5 Gig tree 
              Integer solution and bound:  UNCHANGED 
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Financial Impact 

 Example: NFL 
◦ Profitability of a $9B company heavily 

dependent on the solution to one 
extremely difficult MIP model 

 

 Many other examples 
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Throw Hardware at the Problem? 

 The landscape… 
◦ Broadly applicable 

◦ Computationally demanding 

◦ Solutions have significant financial value 

 Plus… 
◦ “Obvious” sources of parallelism in the algorithms 

 Yet… 
◦ Parallel computing has had a very limited impact 

in practice 
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Parallelism in Linear 
Programming 
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Simplex Steps 

 Maintain a basis B 

◦ And a basis factorization B=LU 

 In each iteration: 

◦ Choose entering variable 

◦ Compute direction (Dx = B
-1
 A

*j
) 

◦ Compute step length 

◦ Update basis and basis factor 

 Periodically recompute B=LU 
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Barrier Steps 

 Pre-compute a fill-reducing ordering for 

A -1
 A’  

 In each iteration: 

◦ Form A -1
 A’ 

◦ Factor A -1
 A’ = L D L’ 

◦ Solve L D L’ x = b 

◦ A few Ax and A’x computations 

◦ A bunch of vector stuff  

 Perform a crossover to a basic solution  
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For Any LP/MIP 

 Presolve step to reduce the size of 

the model 

◦ Remove fixed variables 

◦ Remove trivially satisfied constraints 

◦ Use equalities to eliminate variables 

◦ Etc. 
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Comparison of Steps 

 Iterations 
◦ Simplex: cheap, thousands-millions 
◦ Barrier: expensive, several dozen 

 Sparse linear algebra 
◦ Simplex: triangular solves on a very sparse, constantly 

changing matrix 
◦ Barrier: Cholesky factorization of a matrix with static 

structure 

 Parallelism 
◦ Simplex: no general-purpose parallel algorithm 
◦ Barrier: Cholesky factorization, triangular solves, 

matrix-vector multiplies, ordering, … 
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Performance Comparison 

 Run a set of 1242 LP test models 

◦ Public benchmarks and customer models 

 Exclude those that are… 

◦ Too easy: solved in less than 0.01 seconds by both 

methods 

◦ Too hard: not solved in 2 hours by either method 

◦ Leaves 809 models 

 Compute geometric mean of runtime ratios 
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Performance Comparison 

 Results: 

 Gurobi 5.6, quad-core i7-3770K processor 

 Barrier run on 4 cores, includes crossover 
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   Wins  GeoMean 

Dual simplex 541  1.00 

Barrier  483  0.95 

 Simplex wins more often, but barrier is 5% 

faster on average 
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Exclude Simpler Models 

 What if you change the ‘too easy’ 

threshold…? 

19 

           Wins   Bar/Dual 

MinTime Dual  Barrier GeoMean 

>0.01s 541  483  0.95 

>0.1s  275  298  0.70 

>1s  121  207  0.49 

 As models get more difficult, barrier pulls 

ahead 

 Not on all models, though 
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Peak Performance 

 Peak DP Gflops, from 2001 to today: 
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Parallel Barrier Performance 

 Parallel speedups 
◦ Models that take > 1s to solve 
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Barrier Runtime Breakdown 

 For models that require more than 1s: 
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Barrier Runtime Breakdown 

 As models get harder (P=4)… 
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Concurrent Optimization 

 Run both algorithms, stop when the 

first one finishes 

 Results: 

 Gurobi 5.6, quad-core i7-3770K 

 Dual simplex on 1 core, barrier on 3 cores 

 Models that take >1s 
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    GeoMean 

Dual simplex  1.00 

Barrier   0.49 

Concurrent   0.38 
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Parallelism in Mixed-Integer 
Programming 
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 Subtrees in branch-and-bound are 
independent 

MIP – Embarrassingly Parallel? 

 Trivial to 
distribute them 
among processors 



Parallel MIP – Reality 

 MIPLIB2010 test set: 
◦ Benchmark subset: 87 models, not too easy, not too hard 
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Parallel Speedup By Model (P=12) 
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A Bit of Noise Mixed In 

 Random noise plays a big role 

 Example - model 60WA01: 
◦ Default settings:  509s 

◦ Seed=2:   23s 

 22X speedup from changing the 
random number seed 
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Parallel Speedup By Model (P=12) 
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Fraction of runtime at root 
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More Accurate Picture of Search Tree 



Root Computations 

 What happens at the root node? 
◦ Presolve 
◦ Root relaxation solution 
◦ Cutting planes 
◦ Heuristics 
◦ Symmetry detection 
◦ Initial branch variable selection 
◦ … 

 Basic motivation 
◦ Better to discover something at the root than 

rediscover it at every node 
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Example – Cutting Planes 

 Identify constraints that cut off continuous 
solutions but don’t cut off integer solutions 
◦ Simple example: clique cut (binary variables) 

 x + y <= 1, y + z <= 1, x + z <= 1 

 Feasible relaxation solution: x=y=z=0.5 

 Implied: x + y + z <= 1 

 Add redundant constraints to the model to 
tighten the relaxation 
◦ 13 different cutting plane types in Gurobi 
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Example – Symmetry 

 Identify symmetry in the model 
◦ Given a MIP 

 min {c’x | Ax <= b} 

◦ Find all automorphisms: 

 Row permutation a 

 Column permutation b 

 (b, a)(A) = A, a(c) = c, b(b) = b 

 During search, prune subtrees that are 
isomorphic to already explored subtrees 
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 Test environment 
◦ Internal test set (~6000 models) 

◦ Solvable by at least one version 

◦ At least one version takes > 100 seconds 

◦ Geometric means speedup 

◦ P=4* 

 Version-to-version improvements 
◦ Gurobi 1.0 -> 2.0:  2.4X 

◦ Gurobi 2.0 -> 3.0:  2.2X (5.1X) 

◦ Gurobi 3.0 -> 4.0:  1.3X (6.6X) 

◦ Gurobi 4.0 -> 5.0:  2.0X (12.8X) 

◦ Gurobi 5.0 -> 5.5:  1.3X (16.4X) 

◦ Gurobi 5.5 -> 5.6:   1.3X (20.9X)** 

 
*p=4 vs. p=1 for V5.1 – 1.9X 

**Approximately 2x per year 

MIP Speedup 2009-Present 
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The Nature of the Improvements 

 MIP improvements generally reduce the 
number of nodes explored 
◦ Speed of processing branch-and-bound nodes 

hasn’t changed much over the years 

◦ Improvements often increase the time spent at 
the root node 

 Consequence 
◦ Better MIP algorithms -> fewer opportunities for 

parallelism 
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Concurrent MIP 

 Same idea as for LP: 
◦ Apply different algorithms on different 

processors 
◦ First one that finishes wins 

 For MIP: 
◦ Consider different strategies rather than 

different algorithms 
 More/less aggressive cuts 
 More/less aggressive heuristics 
 Different branch variable selection 
 More/less aggressive presolve 

◦ Most effective strategy we’ve found so far… 
 Different random number seeds 
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Concurrent MIP 

 MIPLIB2010 test set: 
◦ Models that require >100s 

◦ Different random number seeds on each instance 
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Distributed MIP 

 Not all is lost 

 Still plenty of 
models with large 
search trees 

 Simple distributed 
scheme 
sometimes works 
well 

 



Distributed MIP 

 Parallel speedups, versus a single 
machine 
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Conclusions 

 Significant demand for performance 
◦ The data is there 

◦ The money is there 

 Despite “obvious” sources of 
parallelism, parallel computing 
continues to play only a modest role 
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