Efficient Algorithms for Deep Learning

Shai Shalev-Shwartz

School of CS and Engineering,
The Hebrew University of Jerusalem

"Simons Institute”,
Berkeley 2013

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13

Neural Networks

@ A single neuron with activation function 0 : R —» R

u () o((v,x)

HOOOG
<
w

@ Usually, o is taken to be a sigmoidal function /

N

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 2/28

Neural Networks

@ A multilayer neural network of depth 3 and size 6

Input Hidden Hidden Output
layer layer layer layer

Shai Shalev-Shwartz (Hebrew U)

Why Deep Neural Networks are Great?

@ Because “A" uses it to do “B"

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks

Why Deep Neural Networks are Great?

@ Because “A” uses it to do “B”

@ Classic explanation: Neural Networks are universal approximators —
every Lipschitz function f: [—1,1]% — [~1,1] can be approximated
by a neural network

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks

Why Deep Neural Networks are Great?

@ Because “A" uses it to do “B"

@ Classic explanation: Neural Networks are universal approximators —
every Lipschitz function f: [—1,1]% — [~1,1] can be approximated
by a neural network

@ Not convincing because

o It can be shown that the size of the network must be exponential in d,
so why should we care about such large networks 7
o Many other universal approximators exist (nearest neighbor, boosting

with decision stumps, SVM with RBF kernels), so why should we prefer
neural networks?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 4 /28

Why Deep Neural Networks are Great?

A Statistical Learning Perspective

@ Goal: Learn a function h : X —) based on training examples
S = (($17y1)7) (l'm,ym)) € (X X y)m

@ No-Free-Lunch Theorem: For any algorithm A, and any sample size
m, there exists a distribution D over X x) and a function h* such
that h* is perfect w.r.t. D but with high probability over S ~ D™,
the output of A is very bad

@ Prior knowledge: We must bias the learner toward “reasonable”
functions — hypothesis class H C yr

@ What should be H ?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks

Why Deep Neural Networks are Great?

A Statistical Learning Perspective

o First idea: Let H4 be all functions we can implement in C4++ using
code length of at most b bits

With sufficiently large b, H 4 contains all functions we would ever
want to learn

Sample complexity of learning ., to accuracy € is b/e?

Learning algorithm is very simple: Empirical Risk Minimization
(ERM) — find h € H 4 that has minimal error on S

End of story ?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 6 /28

Why Deep Neural Networks are Great?

A Statistical Learning Perspective

o First idea: Let H4 be all functions we can implement in C4++ using
code length of at most b bits

o With sufficiently large b, H,+ contains all functions we would ever
want to learn

Sample complexity of learning ., to accuracy € is b/e?

Learning algorithm is very simple: Empirical Risk Minimization
(ERM) — find h € H 4 that has minimal error on S

End of story ?

The computational barrier: But, how do we implement ERM?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 6 /28

Why Deep Neural Networks are Great?

A Statistical Learning Perspective

o Second idea: Consider all functions over {0,1}¢ that can be executed
in time at most 7'(d)

@ Theorem: The class Hyy of neural networks of depth O(T'(d)) and
size O(T'(d)?) contains all functions that can be executed in time at
most 7T'(d)

@ A great hypothesis class:

o With sufficiently large network depth and size, we can express all
functions we would ever want to learn

e Sample complexity behaves nicely and is well understood (see Anthony
& Bartlett 1999)

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 7 /28

Why Deep Neural Networks are Great?

A Statistical Learning Perspective

Second idea: Consider all functions over {0, 1}¢ that can be executed

in time at most 7'(d)

@ Theorem: The class Hyy of neural networks of depth O(T'(d)) and
size O(T'(d)?) contains all functions that can be executed in time at
most 7T'(d)

@ A great hypothesis class:

o With sufficiently large network depth and size, we can express all
functions we would ever want to learn

e Sample complexity behaves nicely and is well understood (see Anthony
& Bartlett 1999)

@ The computational barrier: But, how do we train neural networks ?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 7 /28

Neural Networks — The computational barrier

o It is NP hard to implement ERM for a depth 2 network with £ > 3
hidden layers whose activation function is sigmoidal or sign (Blum
and Rivest 1992, Bartlett and Ben-David 2002)

@ Current approaches: Back propagation, possibly with unsupervised
pre-training and other bells and whistles

@ No theoretical guarantees, and often requires manual tweaking

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 8 /28

How to circumvent hardness?

@ Over-specification
@ Extreme over-specification eliminate local (non-global) minima
@ Hardness of improperly learning a two layers network with k = w(1)
hidden neurons

© Change the activation function (sum-product networks)
@ An efficient algorithm for learning sum-product networks of depth 2
and small size using over-specification
@ Hardness of learning deep sum-product networks

© Distributional assumptions
@ Learning of algebraic sets

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 9 /28

Circumventing Hardness using Over-specification

@ Yann LeCun:

e Fix a network architecture and generate data according to it

e Backpropagation fails to recover parameters

e However, if we enlarge the network size, backpropagation works just
fine

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 10 / 28

Circumventing Hardness using Over-specification

@ Yann LeCun:

Fix a network architecture and generate data according to it
Backpropagation fails to recover parameters

However, if we enlarge the network size, backpropagation works just
fine

o Maybe we can efficiently learn neural network using over-specification?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 10 / 28

Extremely over-specified Networks have no local

(non-global) minima

o Let X € R%™ be a data matrix of m examples
o Consider a network with:

e N internal neurons

e v be the weights of all but the last layer

o F(v; X) be evaluations of internal neurons over data matrix X
e w be weights connecting internal neurons to the output neuron
o The output of the network is w ' F(v; X)

@ Theorem: If N > m, and under mild conditions on F', the
optimization problem min,, ,, ||w ' F(v; X) — y||? has no local
(non-global) minima

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 11 /28

Extremely over-specified Networks have no local

(non-global) minima

Let X € R%™ be a data matrix of m examples

Consider a network with:

e N internal neurons

e v be the weights of all but the last layer

o F(v; X) be evaluations of internal neurons over data matrix X

e w be weights connecting internal neurons to the output neuron

o The output of the network is w ' F(v; X)
@ Theorem: If N > m, and under mild conditions on F', the
optimization problem min,, ,, ||w ' F(v; X) — y||? has no local
(non-global) minima
Proof idea: W.h.p. over perturbation of v, F(v; X) has full rank. For
such v, if we're not at global minimum, just by changing w we can
decrease the objective

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 11 /28

Is over-specification enough ?

@ But, such large networks will lead to overfitting

@ Maybe there's a clever trick that circumvent overfitting
(regularization, dropout, ...) ?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 12 /28

Is over-specification enough ?

But, such large networks will lead to overfitting

Maybe there's a clever trick that circumvent overfitting
(regularization, dropout, ...) ?

@ Theorem (Daniely, Linial, S.) Even if the data is perfectly generated
by a neural network of depth 2 and with only & = w(1) neurons in the
hidden layer, there is no algorithm that can achieve small test error

Corollary: over-specification alone is not enough for efficient
learnability

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 12 /28

Proof Idea: Hardness of Improper Learning

@ Improper learning: Learner tries to learn some hypothesis h* € H but
is not restricted to output a hypothesis from H

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 13 /28

Proof Idea: Hardness of Improper Learning

@ Improper learning: Learner tries to learn some hypothesis h* € H but
is not restricted to output a hypothesis from H

@ How to show hardness?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 13 /28

Proof Idea: Hardness of Improper Learning

@ Improper learning: Learner tries to learn some hypothesis h* € H but
is not restricted to output a hypothesis from H

@ How to show hardness?

@ Technical novelty: A new method for deriving lower bounds for
improper learning

@ Technique yields new hardness results for improper learning of:

e DNFs
(open problem since Kearns&Valiant'1989)

o Intersection of w(1) halfspaces
(Klivans&Sherstov'2006 showed hardness for d° halfspaces)

e Constant approximation ratio for agnostically learning halfspaces
(previously, only hardness of exact learning was known)

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 13 /28

Computational-Statistical Tradeoffs

@ Daniely, Linial, S. To appear in NIPS'13

For agnostically learning halfspaces over 3-sparse vectors:

runtime

N

20(d) 41
> poly(d) -
dO(l) 41 T

} } — examples

|.)

@ Most previous work either rely on upper bounds or deal with synthetic
hypothesis classes

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 14 / 28

How to circumvent hardness?

© Change the activation function (sum-product networks)
@ An efficient algorithm for learning sum-product networks of depth 2
and small size using over-specification
@ Hardness of learning deep sum-product networks

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 15 / 28

Circumventing hardness — sum-product networks

@ Simpler non-linearity — replace sigmoidal activation function by the
square function o(a) = a?

@ Network implements polynomials, where the depth corresponds to
degree

@ The size of the network (number of neurons) determines
generalization properties and evaluation time

@ Can we efficiently learn the class of polynomial networks of small size?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 16 / 28

Depth 2 polynomial network

Input Hidden Output
layer layer layer

Shai Shalev-Shwartz (Hebrew U)

Depth 2 polynomial networks

@ Corresponding hypothesis class:

H:{xHZ/\¢<Ui,$>2 :)\Z’ER,UiERd} .
1=1

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 18 / 28

Depth 2 polynomial networks

@ Corresponding hypothesis class:
T
H = {x — Z/\i<?}i,$>2 TN\ E R,Ui S Rd} .
i=1

@ ERM is still NP hard

@ But, here, over-specification works !

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 18 / 28

Depth 2 polynomial networks

Corresponding hypothesis class:
T
H = {x — Z/\i<?}i,$>2 TN\ E R,Ui S Rd} .
i=1

ERM is still NP hard
But, here, over-specification works !

Using d? hidden neurons suffices (trivial)

Can we do better?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 18 / 28

Learning depth 2 polynomial networks using GECO

Greedy Efficient Component Optimization (GECO):
e Initialize V =[], A =]
e Fort=1,2,...,T
Let M =E,,) (2, Xi((vi, 2))? —y)zz "
V = [V v] where v is a leading eigenvector of M
Let B = argming E(xvy)((Vx)TB(Vx) —y)?
Update A = eigenvalues(B) and V = Veigenvectors(B)

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 19 / 28

Learning depth 2 polynomial networks using GECO

Greedy Efficient Component Optimization (GECO):
e Initialize V =[], A =]
e Fort=1,2,...,T
Let M =E,,) (2, Xi((vi, 2))? —y)zz "
V = [V v] where v is a leading eigenvector of M
Let B = argming E(xvy)((Vx)TB(Vx) —y)?
Update A = eigenvalues(B) and V = Veigenvectors(B)

Analysis:
e For every A1,..., A\, and vy,..., v, s.it. |lvg|| =1 and |N\;| = O(1)
o If T' > Q(r?/€?) then the output of GECO is e-accurate

@ Over-specification helps !

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 19 / 28

High degree polynomials 7

o Learning sigmoidal networks is hard even of depth 2 and w(1) hidden
neurons, and even if we allow over-specification

@ Learning polynomial networks of depth 2 is tractable if we allow
over-specification
@ What about higher degrees?
Theorem (Livni, Shamir, S.): It is hard to learn polynomial networks of
depth poly(d) even if their size is poly(d).
Proof idea: It is possible to approximate the sigmoid function with a
polynomial of degree poly(d)

@ What about depth 3 and constant number of hidden neurons?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 20 / 28

Outline

How to circumvent hardness?

© Distributional assumptions
@ Learning of algebraic sets

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 21 /28

Distributional Assumptions

@ A set of points is an algebraic set if it is the set of solutions to a set
of polynomial equations

@ Assume that the positive and negative examples lie on different
algebraic sets

o Can we efficiently train a network that classifies the data?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 22 /28

Vanishing Component Analysis (VCA)

@ The vanishing ideal: I(S), for S C R?, is the set of all polynomials p
s.t. Vo € S,p(x) =0

@ Generators: fi,..., fr are generators of ideal I if every f € I can be
written as f = Zle gifi, for g; being polynomials

@ Hilbert's basis theorem: Every ideal is generated by a finite set of
polynomials

@ Goal: Given a finite set of points, S C R4, efficiently find a small set
of polynomials that generates I(.S)

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 23 /28

Vanishing Component Analysis (VCA)

Main ideas:

e Given p and S = (x1,...,) define p(S) = (p(z1),...,p(xzm))
@ Every linear operation on p(S) has an analogue on p

o Let C1 = [21(S) ... za(9)].
e Perform SVD on C4
o Non-vanishing eigenvectors go to F}
e Vanishing eigenvectors go to V;
@ Induction step
e Assume F7,..., F; spans non-vanishing polynomials of degree at most
t and V7, ..., V; generates vanishing polynomials of degree at most ¢

e Grading property: Every polynomial f of degree ¢t + 1 can be written as
g+, gihi where g is of degree at most ¢, all ; are of degree ¢ and

all g; are of degree 1

o Let Ct+1 = [g(S)h(S) g€ Fi,heFy]
o Obtain Ft+1, ‘/-t+1 by SVD'lng Ct+1

Shai Shalev-Shwartz (Hebrew U)

Learning Deep Networks

Oct'13

24 /28

Vanishing Component Analysis (VCA)

Analysis
o Correctness: For every t, for every p of degree t, we can write
p =g+ h where g € span(F1,...,F;) and h is in the ideal generated
by Vl, ey Vt
@ Usefulness: If negative and positive examples are on different
algebraic set, using F,V as features yields linearly separable data

o Efficiency: Number of polynomials and their evaluation time is
polynomial in m, d

@ What about statistical usefulness ?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 25 /28

Comparing VCA to Polynomial Kernels

@ Polynomial kernels also rely on a distributional assumption: large
margin in the feature space
@ VCA relies on a different distributional assumption

@ Which assumption is more natural / realistic?

Oct'13 26 /28

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks

@ Deep networks are great statistically but cannot be trained efficiently

@ Main open problem: Find a combination of network architecture and
distributional assumptions that are useful in practice and lead to
efficient algorithms

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 27 / 28

Collaborators

o Seek of efficient algorithms for deep learning: Ohad Shamir

@ GECO: Alon Gonen and Ohad Shamir
Based on a previous paper with Tong Zhang and Nati Srebro

@ VCA: Roi Livni, David Lehavi, Hila Nachlieli, Sagi Schein, Amir
Globerson

@ Lower bounds: Amit Daniely and Nati Linial

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct'13 28 /28

	Over-specification
	Extreme over-specification eliminate local (non-global) minima
	Hardness of improperly learning a two layers network with k = (1) hidden neurons

	Change the activation function (sum-product networks)
	An efficient algorithm for learning sum-product networks of depth 2 and small size using over-specification
	Hardness of learning deep sum-product networks

	Distributional assumptions
	Learning of algebraic sets

