
Combinatorial Randomized Kaczmarz:
An Algebraic Perspective

Sivan Toledo‡

in collaboration with
Haim Avron†

Haim Kaplan‡

‡Tel-Aviv University †IBM TJ Watson Research Center



Perspectives on a Randomized Graph Algorithm
for Linear Equations

Sivan Toledo‡

in collaboration with
Haim Avron†

Haim Kaplan‡

‡Tel-Aviv University †IBM TJ Watson Research Center



My gift to the
Simons Institute for the Theory of Computing
is this insight:

In theory,
Practitioners can take theoretical results and turn them into
fantastic software.



My gift to the
Simons Institute for the Theory of Computing
is this insight:

In theory,
Practitioners can take theoretical results and turn them into
fantastic software.



My gift to the
Simons Institute for the Theory of Computing
is this insight:

In theory,
Practitioners can take theoretical results and turn them into
fantastic software.
In practice, this is often impossible or hard.



Problem Setup

Solve Ax = b with A symmetric, sparse, large, semidefinite



Problem Setup (More Structure)

Solve Ax = b with A symmetric, sparse, large, semidefinite
and diagonally dominant



Laplacians of Graphs

1 2 3 4

5 6 7 8

9 10 11 12

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 −1
−1 3 −1 −1

−1 3 −1 −1
−1 2 −1

−1 3 −1 −1
−1 −1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 3 −1

−1 2 −1
−1 −1 3 −1

−1 −1 3 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦



Ancient History: Direct Solvers, Dense and Sparse,
(Preconditioned) Conjugate Gradients



Direct Solvers do not Scale Well

Gauss (Cholesky): factor A = LLT , L triangular, O(n3)
arithmetic

Sparse solvers: factor A = PLLTPT , P permutation

• O(n1.5) for 2D meshes,
• O(n2) for 3D meshes,
• in general depends on size of

approximately-balanced vertex separators



Conjugate Gradients (and Variants)

Iteratively improve an approximate solution x(t) → x

Cost of each iteration is O(nnz(A)) = O(# edges) = O(m)

Convergence (number of iterations) depends on the
distribution of eigenvalues Λ(A)

• Faster on 3D meshes than on 2D because eigenvalues
in 3D are more clustered

• Fantastic on expanders but too slow on meshes



The Idea of Preconditioning (Still Ancient)

Find an approximation P to A, factor P = LLT and run CG on

(
L−1AL−T

) (
LTx

)
= L−1b

Works well if P is easy to factor and if Λ
(
L−1AL−T

)
is

distributed better than Λ(A)



1991-2001: Combinatorial Preconditioners for CG



Combinatorial Subgraph Preconditioners



Reasoning about Convergence Rates: Incidence Factors

Consider the incidence factors A = UUT ,

Aij = Aji �= 0 =⇒ Ue =

⎡
⎢⎢⎢⎢⎢⎢⎣

...√
Aij

...
−
√

Aij

...

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

...
ρe

...
−ρe

...

⎤
⎥⎥⎥⎥⎥⎥⎦

U ∈ R
n×m, columns have 2 nonzeros & correspond to edges

in the graph of A



Convergence Rates:
Combinatorial Spectral Bounds for Subgraphs

Let A = UUT , U = [UB UN], and P = UBU
T
B

Use a graph embedding to create W such as U = UBW

Can show that Λ
(
L−1AL−T

) ⊆ [1, ‖W‖2]
Combinatorial properties of the embeddings (congestion,
dilation, stretch) can be used to bound ‖W‖2
There’s looseness in the combinatorial bounds, but they are
useful

[Boman & Hendrickson, 2003]



Constructing the Subgraph

1991: A maximum spanning tree (MST); Augmented MST
[Vaidya]

1997: Explicit construction for regular meshes [Joshi]

2001: Low-stretch trees (can’t easily augment) [Boman &
Hendrickson]

2004+: Super-complicated constructions [Spielman & Teng]

2010+: Simpler but not in this talk [Koutis, Miller, & Peng]

Lots of side shows (Toledo & others)



2013: Low-Stretch Trees without Conjugate Gradients

Kelner, Orecchia, Sidford, Zhu (STOC 2013)



Kelner, Orecchia, Sidford, Zhu (STOC 2013)

New Algorithm

Iterative but does not use Conjugate Gradients or its relatives

Uses low-stretch trees

A new kind of analysis; does not build on earlier results

Analysis based on “electrical” reasoning (was used before as
motivation, but not as an analytical tool)

We will show an alternative algebraic analysis



The Big Picture

Ax = UUTx = b

Given U, construct a basis N for its null space UNT = 0,
define

K =

[
U
N

]
(square and full rank)

Find a vector f that satisfies

Kf =

[
U
N

]
f =

[
b
0

]

Because Nf = 0, there is an x such that UTx = f

Find that x (easy)

Because Uf = b we have Uf = UUTx = Ax = b



The Big Picture

Ax = UUTx = b

Given U, construct a basis N for its null space UNT = 0,
define

K =

[
U
N

]
(square and full rank)

Find a vector f that satisfies

Kf =

[
U
N

]
f =

[
b
0

]

Because Nf = 0, there is an x such that UTx = f

Find that x (easy)

Because Uf = b we have Uf = UUTx = Ax = b

Obviously only makes sense if Kf = g is easy



Constraint-Relation Iterations

Pick a constraint (row) in a linear system Kf = g

Modify the approximate solution to satisfy this constraint

Repeat

Jacobi: correct KT
i f = gi by modifying fi



Constraint Relation Iterations

Pick a constraint (row) in a linear system Kf = g

Modify the approximate solution to satisfy this constraint

Repeat

Jacobi: correct KT
i f = gi by modifying fi (adding αei to f)



Constraint Relation Iterations

Pick a constraint (row) in a linear system Kf = g

Modify the approximate solution to satisfy this constraint

Repeat

Kaczmarz: correct by adding αKi to f (projection)

Jacobi: correct KT
i f = gi by modifying fi (adding αei to f)



Kaczmarz and our Augmented System

Find an initial f(0) that

Kf(0) =

[
U
N

]
f(0) =

[
b

z �= 0

]

(easy); run Kaczmarz; show it maintains the invariant

Kf(t) =

[
U
N

]
f(t) =

[
b

z̃ → 0

]

Kaczmarz picks a row in K, say i

If the row is in U we have UT
i f

(t) = bi so α = 0; do nothing

If the row is in N, f(t+1) = f(t) + αNT
i so

UT
i f

(t+1) = UT
i (f

(t) + αNT
i ) = UT

i f
(t) + 0 = bi

⇒ We converge on z̃ without messing up Uf(t) = b



Three Hard Interrelated Challenges

1. How to construct N?

2. How many Kaczmarz iterations will the algorithm do?

3. Running Kaczmarz iterations super efficiently



Constructing the Null-Space Basis

Split U = [UB UN], UB represents a spanning tree

UB is a basis for the column space of U, so

U = [UB UN] = UBW = UB[I WN]

Theorem: N = [−WT
N I] is a null-space basis

Proof: [
UB UN

] [−WN

I

]
= −UBWN +UN

= −UN +UN

= 0

But how do you construct WN?



Constructing W from a Path Embedding

A weighted path in the tree specifies a column of WN,

Ue =

⎡
⎢⎢⎢⎢⎢⎢⎣

...
ρe

...
−ρe

...

⎤
⎥⎥⎥⎥⎥⎥⎦
=

∑
e ′∈path

We ′,eUe ′ =
∑
e ′∈GP

± ρe

ρe ′
Ue ′

How makes a tree “good”? Fast Kaczmarz convergence



Convergence of Randomized Kaczmarz

Randomized Kaczmarz:

• pick row i at random w/probability ∝ ‖KT
i ‖2

Randomized Kaczmarz converges in O(‖K‖F‖K−1‖2)
iterations

For us, what matters is only the N part, because Kaczmarz
never visits the U rows

We need an N with a small sum-of-squares that cannot make
vectors small



The Condition Number of the Null-Space Basis

We need N = [−WT
N I] with a small sum-of-squares that

cannot make vectors small

σmin(N) ≥ 1 because of the I block

‖N‖2F = ‖WN‖2F + (m− n) =
∑

e,e ′∈embedding

(
ρe

ρe ′

)2

+ (m− n)

= stretch of tree + (m − n)

A low-stretch tree guarantees ‖N‖F = Õ(m)

A maximum spanning tree guarantees (ρe/ρe ′) ≤ 1; nice but
not as good



Super-Efficient Projections (I)

Kaczmarz: pick a non-tree edge i correct by adding αKT
i to f

(projection),
f(t+1) = f(t) + αKT

i

with α chosen to ensure KT
i f

(t+1) = gi, or

α =
gi −

∑
j Kijf

(0)
j −

∑
j Kijf

(t)
j∑

j K
2
ij

Only
∑

j Kijf
(t)
j changes every iteration; the summation is

over a tree path



Super-Efficient Projections (II): The Key Idea

Create a data structure that represents f(t) on tree edges and
supports the following operations:

• Evaluate
∑

j Kijf
(t)
j (summation over a path)

• Update f(t+1) = f(t) + αKT
i

• Output f(final) explicitly (at teardown)

This is nontrivial because coefficients depend on path (i), not
only on edge (j)



Super-Efficient Projections (III): The Data Structure

An algebraic transformation allows us to remove path
dependency:

• Evaluate
∑

j βjf
(t)
j (summation over a path)

• Update f(t+1) = f(t) + αKT
i

• Output f(final) explicitly (at teardown)

O(logn) per operation using a hierarchical data structure
derived from Sleator and Tarjan’s dynamic trees



Summary, Experiences, & Outlook

Not directly related to Vaidya & followups

Low-stretch trees are useful in both frameworks for basically
the same reasons

Two key ideas:

• A combinatorial/null-space method to transform an
ill-conditioned problem to a larger well conditioned
one

• An implicit representation of the iteration vector
ensure O(logn) operations

Convergence appears to be very slow (large constants)

Can this algorithm be parallelized?


