Combinatorial Randomized Kaczmarz: An Algebraic Perspective

Sivan Toledo[‡] in collaboration with Haim Avron[†] Haim Kaplan[‡]

[‡]Tel-Aviv University

[†]IBM TJ Watson Research Center

Perspectives on a Randomized Graph Algorithm for Linear Equations

Sivan Toledo[‡] in collaboration with Haim Avron[†] Haim Kaplan[‡]

[‡]Tel-Aviv University

[†]IBM TJ Watson Research Center

My gift to the Simons Institute for the Theory of Computing is this insight:

Practitioners can take theoretical results and turn them into fantastic software.

My gift to the Simons Institute for the Theory of Computing is this insight:

In theory, Practitioners can take theoretical results and turn them into fantastic software. My gift to the Simons Institute for the Theory of Computing is this insight:

In theory, Practitioners can take theoretical results and turn them into fantastic software. In practice, this is often impossible or hard.

Problem Setup

Solve Ax = b with A symmetric, sparse, large, semidefinite

Problem Setup (More Structure)

Solve Ax = b with A symmetric, sparse, large, semidefinite **and diagonally dominant**

Laplacians of Graphs

Ancient History: Direct Solvers, Dense and Sparse, (Preconditioned) Conjugate Gradients

Direct Solvers do not Scale Well

Gauss (Cholesky): factor $A = LL^T$, L triangular, $O(n^3)$ arithmetic

Sparse solvers: factor $A = PLL^{T}P^{T}$, P permutation

- $O(n^{1.5})$ for 2D meshes,
- $O(n^2)$ for 3D meshes,
- in general depends on size of approximately-balanced vertex separators

Iteratively improve an approximate solution $x^{(t)} \rightarrow x$

Cost of each iteration is O(nnz(A)) = O(# edges) = O(m)

Convergence (number of iterations) depends on the distribution of eigenvalues $\Lambda(A)$

- Faster on 3D meshes than on 2D because eigenvalues in 3D are more clustered
- Fantastic on expanders but too slow on meshes

The Idea of Preconditioning (Still Ancient)

Find an approximation P to A, factor $P = LL^T$ and run CG on

$$\left(L^{-1}AL^{-T}\right)\left(L^{T}x\right) = L^{-1}b$$

Works well if P is easy to factor and if $\Lambda (L^{-1}AL^{-T})$ is distributed better than $\Lambda(A)$

1991-2001: Combinatorial Preconditioners for CG

Combinatorial Subgraph Preconditioners

Reasoning about Convergence Rates: Incidence Factors

Consider the incidence factors $A = UU^T$,

$$A_{ij} = A_{ji} \neq 0 \implies U_e = \begin{bmatrix} \vdots \\ \sqrt{A_{ij}} \\ \vdots \\ -\sqrt{A_{ij}} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ \rho_e \\ \vdots \\ -\rho_e \\ \vdots \end{bmatrix}$$

 $U \in \mathbb{R}^{n \times m}$, columns have 2 nonzeros & correspond to edges in the graph of *A*

Convergence Rates: Combinatorial Spectral Bounds for Subgraphs

Let $A = UU^T$, $U = [U_B U_N]$, and $P = U_B U_B^T$

Use a graph embedding to create W such as $U = U_B W$

Can show that $\Lambda \left(L^{-1}AL^{-T} \right) \subseteq [1, \|W\|_2]$

Combinatorial properties of the embeddings (congestion, dilation, stretch) can be used to bound $||W||_2$

There's looseness in the combinatorial bounds, but they are useful

[Boman & Hendrickson, 2003]

Constructing the Subgraph

- 1991: A maximum spanning tree (MST); Augmented MST [Vaidya]
- 1997: Explicit construction for regular meshes [Joshi]
- 2001: Low-stretch trees (can't easily augment) [Boman & Hendrickson]
- 2004+: Super-complicated constructions [Spielman & Teng]
- 2010+: Simpler but not in this talk [Koutis, Miller, & Peng]

Lots of side shows (Toledo & others)

2013: Low-Stretch Trees without Conjugate Gradients

Kelner, Orecchia, Sidford, Zhu (STOC 2013)

Kelner, Orecchia, Sidford, Zhu (STOC 2013)

New Algorithm

Iterative but does not use Conjugate Gradients or its relatives

- Uses low-stretch trees
- A new kind of analysis; does not build on earlier results
- Analysis based on "electrical" reasoning (was used before as motivation, but not as an analytical tool)

We will show an alternative algebraic analysis

 $Ax = UU^Tx = b$

Given U, construct a basis N for its null space $UN^T = 0$, define

$$\mathsf{K} = \begin{bmatrix} \mathsf{U} \\ \mathsf{N} \end{bmatrix} \text{ (square and full rank)}$$

Find a vector f that satisfies

$$\mathbf{K}\mathbf{f} = \begin{bmatrix} \mathbf{U} \\ \mathbf{N} \end{bmatrix} \mathbf{f} = \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix}$$

Because Nf = 0, there is an x such that $U^T x = f$ Find that x (easy)

Because Uf = b we have $Uf = UU^T x = Ax = b$

 $Ax = UU^{\mathsf{T}}x = b$

Given U, construct a basis N for its null space $UN^T = 0$, define

$$K = \begin{bmatrix} U \\ N \end{bmatrix}$$
 (square and full rank)

Find a vector f that satisfies

$$\mathbf{K}\mathbf{f} = \begin{bmatrix} \mathbf{U} \\ \mathbf{N} \end{bmatrix} \mathbf{f} = \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix}$$

Because Nf = 0, there is an x such that $U^T x = f$ Find that x (easy)

Because Uf = b we have $Uf = UU^T x = Ax = b$ Obviously only makes sense if Kf = g is easy

Constraint-Relation Iterations

Pick a constraint (row) in a linear system Kf = gModify the approximate solution to satisfy this constraint Repeat

Jacobi: correct $K_i^T f = g_i$ by modifying f_i

Constraint Relation Iterations

Pick a constraint (row) in a linear system Kf = gModify the approximate solution to satisfy this constraint Repeat

Jacobi: correct $K_i^T f = g_i$ by modifying f_i (adding αe_i to f)

Constraint Relation Iterations

Pick a constraint (row) in a linear system Kf = gModify the approximate solution to satisfy this constraint Repeat

Kaczmarz: correct by adding αK_i to f (projection) Jacobi: correct $K_i^T f = g_i$ by modifying f_i (adding αe_i to f) Find an initial $f^{(0)}$ that $Kf^{(0)} = \begin{bmatrix} U \\ N \end{bmatrix} f^{(0)} = \begin{bmatrix} b \\ z \neq 0 \end{bmatrix}$

(easy); run Kaczmarz; show it maintains the invariant $Kf^{(t)} = \begin{bmatrix} U \\ N \end{bmatrix} f^{(t)} = \begin{bmatrix} b \\ \tilde{z} \to 0 \end{bmatrix}$

Kaczmarz picks a row in K, say i

If the row is in U we have $U_i^T f^{(t)} = b_i$ so $\alpha = 0$; do nothing If the row is in N, $f^{(t+1)} = f^{(t)} + \alpha N_i^T$ so $U_i^T f^{(t+1)} = U_i^T (f^{(t)} + \alpha N_i^T) = U_i^T f^{(t)} + 0 = b_i$

 \Rightarrow We converge on \tilde{z} without messing up $\mathsf{U}\mathsf{f}^{(t)}=\mathsf{b}$

Three Hard Interrelated Challenges

- 1. How to construct N?
- 2. How many Kaczmarz iterations will the algorithm do?
- 3. Running Kaczmarz iterations super efficiently

Constructing the Null-Space Basis

Split $U = [U_B \ U_N]$, U_B represents a spanning tree U_B is a basis for the column space of U, so

$$U = [U_B \ U_N] = U_B W = U_B[I \ W_N]$$

Theorem: N = [-W_N^T I] is a null-space basis
Proof:

$$\begin{bmatrix} u_{B} & u_{N} \end{bmatrix} \begin{bmatrix} -W_{N} \\ I \end{bmatrix} = -u_{B}W_{N} + u_{N}$$
$$= -u_{N} + u_{N}$$
$$= 0$$

But how do you construct W_N ?

Constructing W from a Path Embedding

A weighted path in the tree specifies a column of W_N ,

$$U_{e} = \begin{bmatrix} \vdots \\ \rho_{e} \\ \vdots \\ -\rho_{e} \\ \vdots \end{bmatrix} = \sum_{e' \in path} W_{e',e} U_{e'} = \sum_{e' \in G_{P}} \pm \frac{\rho_{e}}{\rho_{e'}} U_{e'}$$

How makes a tree "good"? Fast Kaczmarz convergence

Randomized Kaczmarz:

- pick row i at random w/probability $\propto \|K_i^T\|^2$

Randomized Kaczmarz converges in $O(\|K\|_F \|K^{-1}\|_2)$ iterations

For us, what matters is only the N part, because Kaczmarz never visits the U rows

We need an N with a small sum-of-squares that cannot make vectors small

The Condition Number of the Null-Space Basis

We need $N = \begin{bmatrix} -W_N^T & I \end{bmatrix}$ with a small sum-of-squares that cannot make vectors small

 $\sigma_{min}(N) \geq 1$ because of the I block

$$\|\mathbf{N}\|_{\mathbf{F}}^{2} = \|W_{\mathbf{N}}\|_{\mathbf{F}}^{2} + (\mathbf{m} - \mathbf{n}) = \sum_{e,e' \in \text{embedding}} \left(\frac{\rho_{e}}{\rho_{e'}}\right)^{2} + (\mathbf{m} - \mathbf{n})$$

= stretch of tree + (m - n)

A low-stretch tree guarantees $\|N\|_F = \tilde{O}(m)$ A maximum spanning tree guarantees $(\rho_e/\rho_{e'}) \leq 1$; nice but not as good

Super-Efficient Projections (I)

Kaczmarz: pick a non-tree edge i correct by adding αK_i^T to f (projection),

$$\mathbf{f}^{(t+1)} = \mathbf{f}^{(t)} + \alpha \mathbf{K}_{i}^{\mathsf{T}}$$

with α chosen to ensure $K_i^T f^{(t+1)} = g_i,$ or

$$\alpha = \frac{g_i - \sum_j K_{ij} f_j^{(0)} - \sum_j K_{ij} f_j^{(t)}}{\sum_j K_{ij}^2}$$

Only $\sum_{j} K_{ij} f_{j}^{(t)}$ changes every iteration; the summation is over a tree path

Create a data structure that represents $f^{(t)}$ on tree edges and supports the following operations:

- Evaluate $\sum_{j} K_{ij} f_{j}^{(t)}$ (summation over a path)
- Update $f^{(t+1)} = f^{(t)} + \alpha K_i^T$
- Output f^(final) explicitly (at teardown)

This is nontrivial because coefficients depend on path (i), not only on edge (j)

Super-Efficient Projections (III): The Data Structure

An algebraic transformation allows us to remove path dependency:

- Evaluate $\sum_{i} \beta_{j} f_{i}^{(t)}$ (summation over a path)
- Update $f^{(t+1)} = f^{(t)} + \alpha K_i^T$
- Output f^(final) explicitly (at teardown)

O(log n) per operation using a hierarchical data structure derived from Sleator and Tarjan's dynamic trees

Summary, Experiences, & Outlook

Not directly related to Vaidya & followups

Low-stretch trees are useful in both frameworks for basically the same reasons

Two key ideas:

- A combinatorial/null-space method to transform an ill-conditioned problem to a larger well conditioned one
- An implicit representation of the iteration vector ensure O(log n) operations

Convergence appears to be very slow (large constants)

Can this algorithm be parallelized?