
On the O(1/k) Convergence of Asynchronous
Distributed Alternating Direction Method of Multipliers

(ADMM)

Ermin Wei Asu Ozdaglar

Laboratory for Information and Decision Systems
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Big Data Workshop
Simons Institute, Berkeley, CA

October 2013

1

Introduction

Motivation

Many networks are large-scale and comprise of agents with local information
and heterogeneous preferences.

This motivated much interest in developing distributed schemes for control
and optimization of multi-agent networked systems.

Routing and
congestion control in
wireline and wireless
networks

Parameter estimation
in sensor networks

Multi-agent
cooperative control
and coordination

Smart grid systems

2

Introduction

Distributed Multi-agent Optimization

Many of these problems can be represented within the general formulation:

A set of agents (nodes) {1, . . . ,N} connected through a network.

The goal is to cooperatively solve

min
x

N∑
i=1

fi (x)

s.t. x ∈ Rn,

fi (x) : Rn → R is a convex
(possibly nonsmooth) function,
known only to agent i .

Alternating Direction Methods

Distributed Optimization for General Objective Functions

Separability of objective function (with respect to a partition of the variables into
subvectors) crucial in the previous setting.
In many applications, objective functions nonseparable.
Agents M = {1, . . . , m} cooperatively
solve

minimize
�

i∈M
fi(x)

subject to x ∈ Rn,

fi(x) : Rn → R is a convex function,
representing local objective function of
agent i, known only to this agent.

We denote the optimal value by f ∗ and
optimal solution set by X∗ (assumed
nonempty).

f2(x1, . . . , xn)

fm(x1, . . . , xn)

f1(x1, . . . , xn)

The decision vector x can be viewed as either a resource vector whose subcomponents
correspond to resources allocated to each agent, or a global decision vector which the
agents are trying to compute using local information.

30

Since such systems often lack a centralized processing unit, algorithms for
this problem should involve each agent performing computations locally and
communicating this information according to the underlying network.

3

Introduction

Machine Learning Example

A network of 3 sensors, supervised passive learning.

Data is collected at different sensors: temperature t, electricity demand d .

System goal: learn a
degree 3 polynomial
electricity demand model:

d(t) = x3t
3+x2t

2+x1t+x0.

System objective:

min
x

3∑
i=1

||A′ix − di ||22 .

where Ai = [1, ti , t
2
i , t

3
i]′ at

input data ti .

10 20 30 40 50 60 70 80 90 100 110
12

14

16

18

20

22

24

26

28

30

Temperature

E
le

ct
ric

ity
 D

em
an

d

Least square fit with polynomial max degree 3

4

Introduction

Machine Learning General Set-up

A network of agents i = 1, . . . ,N.

Each agent i has access to local feature vectors Ai and output bi .

System objective: train weight vector x to

min
x

N−1∑
i=1

L(A′ix − bi) + p(x),

for some loss function L (on the prediction error) and penalty function p (on
the complexity of the model).

Example: Least-Absolute Shrinkage and Selection Operator (LASSO):

min
x

N−1∑
i=1

||A′ix − bi ||22 + λ ||x ||1 .

Other examples from ML estimation, low rank matrix completion,
image recovery [Schizas, Ribeiro, Giannakis 08], [Recht, Fazel, Parrilo
10], [Steidl, Teuber, 10]

5

Introduction

Existing Distributed Algorithms

Given an undirected connected graph G = {V ,E} with M nodes, we
reformulate the problem as

min
x

M∑
i=1

fi (xi)

s.t. xi = xj , for (i , j) ∈ E ,

!

"# $#

%#

&#

f2(x2)

f1(x1)

f3(x3)

f4(x4)

f5(x5)
x1 = x2

x3 = x4

x1 = x4

x2 = x3

Distributed gradient/subgradient methods for solving these problems:

Each agent maintains an local estimate, updates it by taking a (sub)gradient
step and averaging with neighbors’ estimates.

Best known convergence rate: O(1/
√

k).[Nedic, Ozdaglar 08], [Lobel,

Ozdaglar 09], [Duchi, Agarwal, Wainwright 12].

6

Distributed ADMM Algorithms

Faster ADMM-based Distributed Algorithms

Classical Augmented Lagrangian/Method of Multipliers and Alternating
Direction Method of Multipliers (ADMM) methods: fast and parallel
[Glowinski, Marrocco 75], [Eckstein, Bertsekas 92], [Boyd et al. 10]:

Known convergence rates for synchronous ADMM type algorithm:

[He, Yuan 11] General convex O(1/k).
[Goldfarb et al. 10] Lipschitz gradient O(1/k2).
[Deng, Yin 12] Lipschitz gradient, strong convexity linear rate.

[Hong, Luo 12] Strong convexity linear rate.

Highly decentralized nature of the problem calls for an asynchronous
algorithm. Almost all known distributed algorithms are synchronous.1

In this talk, we present asynchronous ADMM-type algorithms for general
convex problems and show that it converges at the best known rate of
O(1/k) [Wei, Ozdaglar 13].

1Exceptions: [Ram, Nedic, Veeravalli 09], [Iutzeler, Bianchi, Ciblat, and Hachem
13] without any rate results.

7

Distributed ADMM Algorithms

Standard ADMM

Standard ADMM solves a separable problem, where decision variable
decomposes into two (linearly coupled) variables:

min
x,y

f (x) + g(y) (1)

s.t. Ax + By = c .

Consider an Augmented Lagrangian function:

Lβ(x , y , p) = f (x) + g(y)− p′(Ax + By − c) +
β

2
||Ax + By − c ||22 .

ADMM: approximate version of classical Augmented Lagrangian method.

Primal variables: approximately minimize augmented Lagrangian
through a single-pass coordinate descent (in a Gauss-Seidel manner).
Dual variable: updated through gradient ascent.

8

Distributed ADMM Algorithms

Standard ADMM

More specifically, updates are as follows:

xk+1 = argminx Lβ(x , yk , pk),

yk+1 = argminy Lβ(xk+1, y , pk),

pk+1 = pk − β(Axk+1 − Byk+1 − c).

Each minimization involves (quadratic perturbations of) functions f and g
separately.

In many applications, these minimizations are easy (quadratic
minimization, l1 minimization, which arises in Huber fitting, basis
pursuit, LASSO, total variation denoising). [Boyd et al. 10]

9

Distributed ADMM Algorithms

ADMM for Multi-agent Optimization Problem

Multi-agent optimization problem can be reformulated in the ADMM
framework:

Consider a set of agents V = {1, . . . ,N} connected through an undirected
connected graph G = {V ,E}.
We introduce a local copy xi for each of the agents and impose xi = xj for
all (i , j) ∈ E .

min
x

N∑
i=1

fi (xi)

s.t. xi = xj , for (i , j) ∈ E ,

!

"# $#

%#

&#

f2(x2)

f1(x1)

f3(x3)

f4(x4)

f5(x5)
x1 = x2

x3 = x4

x1 = x4

x2 = x3

10

Distributed ADMM Algorithms

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents: special case of
problem (1):

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1 2

xk+1
1 xk2

pk121

xk+1
1 = argminx1

f1(x1) + f2(xk2)− (pk12)′(x1 − xk2) + β
2

∣∣∣∣x1 − xk2
∣∣∣∣2

2

11

Distributed ADMM Algorithms

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents: special case of
problem (1):

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1 2

xk+1
1 xk2

pk121

xk+1
1 = argminx1

f1(x1)− (pk12)′x1 + β
2

∣∣∣∣x1 − xk2
∣∣∣∣2

2

11

Distributed ADMM Algorithms

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents: special case of
problem (1):

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1 2

xk+1
1 xk+1

2

pk12 2

xk+1
2 =

argminx2
f1(xk+1

1) + f2(x2)− (pk12)′(xk+1
1 − x2) + β

2

∣∣∣∣∣∣xk+1
1 − x2

∣∣∣∣∣∣2
2

11

Distributed ADMM Algorithms

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents: special case of
problem (1):

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1 2

xk+1
1 xk+1

2

pk12 2

xk+1
2 = argminx2

f2(x2) + (pk12)′x2 + β
2

∣∣∣∣∣∣xk+1
1 − x2

∣∣∣∣∣∣2
2

11

Distributed ADMM Algorithms

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents: special case of
problem (1):

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1

xk+1
1 xk+1

2

pk+1
12 2

pk+1 = pk − β(xk+1
1 − xk+1

2).

11

Asynchronous ADMM

Multi-agent Asynchronous ADMM - Problem Formulation

min
x

N∑
i=1

fi (xi)

s.t. xi = xj , for (i , j) ∈ E .

Reformulate to decouple xi and xj by introducing the auxiliary z variable
[Bertsekas, Tsitsiklis 89], which allows us to simultaneously update xi and
potentially improves performance.

Each constraint xi − xj = 0 for
edge e = (i , j) becomes

xi = zei , −xj = zej ,

zei + zej = 0.

!

"# $#

%#

&#

f2(x2)

f1(x1)

f3(x3)

f4(x4)

f5(x5)
x1 = x2

x3 = x4

x1 = x4

x2 = x3

12

Asynchronous ADMM

Multi-agent Asynchronous ADMM - Algorithm

min
x,z

N∑

i=1

fi (xi)

s.t. xi = zei ,−xj = zej for (i , j) ∈ E ,

x ∈ X , i = 1, . . . ,N,

z ∈ Z .

!

"# $#

%#

&#
xk+1

3

xk
1

Set Z = {z | zei + zej = 0 for all e = (i , j)}.
Write constraint as Dx = z , set E (i): the set of edges incident to node i .

We associate an independent Poisson local clock with each edge.

At iteration k , if the clock corresponding to edge (i , j) ticks:

The constraint xi = zei , −xj = zej (subject to zei + zej = 0) is active.
The agents i and j are active.
The dual variables pei and pej associated with edge (i , j) are active.

13

Asynchronous ADMM

Asynchronous ADMM Algorithm

A Initialization: choose some arbitrary x0 in X , z0 in Z and p0 = 0.

B At time step k , an edge e = (i , j) and its end points become active.

a The active primal variables xq for q = i , j are updated as

xk+1
q ∈ argmin

xq∈Xq

fq(xq)−
∑

e∈E(q)

(pkeq)′Deqxq +
β

2

∑
e∈E(q)

∣∣∣∣Deqxq − zkeq
∣∣∣∣2.

with xk+1
w = xkw for w not active.

b The active primal variables zei and zej are updated as

zk+1
ei , zk+1

ej ∈ argmin
zei+zej=0

∑
q=i,j

(pkeq)′zeq +
β

2

∣∣∣∣Deqx
k+1
q − zeq

∣∣∣∣2 .
with zk+1

l = zkl for l not active.
c The active dual variables peq for q = i , j are updated as

pk+1
eq = pkeq − β

[
Dqx

k+1
q − zk+1

eq

]
.

Update in z is a quadratic programming with linear constraint: has closed
form solution and can be easily computed in a distributed way.

14

Asynchronous ADMM

Asynchronous ADMM Algorithm

A Initialization: choose some arbitrary x0 in X , z0 in Z and p0 = 0.

B At time step k , an edge e = (i , j) and its end points become active.

a The active primal variables xq for q = i , j are updated as

xk+1
q ∈ argmin

xq∈Xq

fq(xq)−
∑

e∈E(q)

(pkeq)′Deqxq +
β

2

∑
e∈E(q)

∣∣∣∣Deqxq − zkeq
∣∣∣∣2.

with xk+1
w = xkw for w not active.

b The active primal variables zei and zej are updated as

zk+1
ei , zk+1

ej ∈ argmin
zei+zej=0

∑
q=i,j

(pkeq)′zeq +
β

2

∣∣∣∣Deqx
k+1
q − zeq

∣∣∣∣2 .
with zk+1

l = zkl for l not active.
c The active dual variables peq for q = i , j are updated as

pk+1
eq = pkeq − β

[
Dqx

k+1
q − zk+1

eq

]
.

Update in z is a quadratic programming with linear constraint: has closed
form solution and can be easily computed in a distributed way.

14

Asynchronous ADMM

Asynchronous ADMM Algorithm

A Initialization: choose some arbitrary x0 in X , z0 in Z and p0 = 0.

B At time step k, an edge e = (i , j) and its end points become active.

a For q = i , j , the active primal variable xq is updated as

xk+1
q ∈ argmin

xq∈Xq

fq(xq)−
∑

e∈E(q)

(pk
eq)′Deqxq +

β

2

∑

e∈E(q)

∣∣∣
∣∣∣Deqxq − zk

eq

∣∣∣
∣∣∣

2

.

with xk+1
w = xk

w for w not active.
b To compute z update,

v k+1 =
1

2
(−pk

ei − pk
ej) +

β

2
(Deix

k+1
i + Dejx

k+1
j),

zk+1
eq =

1

β
(−pk

eq − v k+1) + Deqxk+1
q .

c The active dual variables peq for q = i , j are updated as

pk+1
eq = −v k+1.

15

Asynchronous ADMM

Asynchronous ADMM Algorithm

A Initialization: choose some arbitrary x0 in X , z0 in Z and p0 = 0.

B At time step k, an edge e = (i , j) and its end points become active.

a For q = i , j , the active primal variable xq is updated as

xk+1
q ∈ argmin

xq∈Xq

fq(xq)−
∑

e∈E(q)

(pk
eq)′Deqxq +

β

2

∑

e∈E(q)

∣∣∣
∣∣∣Deqxq − zk

eq

∣∣∣
∣∣∣

2

.

with xk+1
w = xk

w for w not active.

b To compute z update,

v k+1 =
1

2
(−pk

ei−pk
ej)+

β

2
(Deix

k+1
i +Dejx

k+1
j),

zk+1
eq =

1

β
(−pk

eq − v k+1) + Deqxk+1
q .

c The active dual variables peq for q = i , j
are updated as

pk+1
eq = −v k+1.

xk+1
3xk+1

2

pk
21, z

k
21 pk

25, z
k
25

pk
23, z

k
23 pk

32, z
k
32

pk
34, z

k
34

pk
35, z

k
35

!

" #

$

%

16

Asynchronous ADMM

Asynchronous ADMM Algorithm

A Initialization: choose some arbitrary x0 in X , z0 in Z and p0 = 0.

B At time step k, an edge e = (i , j) and its end points become active.

a For q = i , j , the active primal variable xq is updated as

xk+1
q ∈ argmin

xq∈Xq

fq(xq)−
∑

e∈E(q)

(pk
eq)′Deqxq +

β

2

∑

e∈E(q)

∣∣∣
∣∣∣Deqxq − zk

eq

∣∣∣
∣∣∣

2

.

with xk+1
w = xk

w for w not active.

b To compute z update,

v k+1 =
1

2
(−pk

ei−pk
ej)+

β

2
(Deix

k+1
i +Dejx

k+1
j),

zk+1
eq =

1

β
(−pk

eq − v k+1) + Deqxk+1
q .

c The active dual variables peq for q = i , j
are updated as

pk+1
eq = −v k+1.

xk+1
2 , xk+1

3

!

" #

$

%

16

Asynchronous ADMM

Asynchronous ADMM Algorithm

A Initialization: choose some arbitrary x0 in X , z0 in Z and p0 = 0.

B At time step k, an edge e = (i , j) and its end points become active.

a For q = i , j , the active primal variable xq is updated as

xk+1
q ∈ argmin

xq∈Xq

fq(xq)−
∑

e∈E(q)

(pk
eq)′Deqxq +

β

2

∑

e∈E(q)

∣∣∣
∣∣∣Deqxq − zk

eq

∣∣∣
∣∣∣

2

.

with xk+1
w = xk

w for w not active.

b To compute z update,

v k+1 =
1

2
(−pk

ei − pk
ej) +

β

2
(Deix

k+1
i + Dejx

k+1
j)

= −pk
ei +

β

2
(Deix

k+1
i + Dejx

k+1
j),

zk+1
eq =

1

β
(−pk

eq − v k+1) + Deqxk+1
q .

c The active dual variables peq for q = i , j
are updated as

pk+1
eq = −v k+1.

xk+1
2 , xk+1

3

pk
23 = pk

32

vk+1 =

− pk
23 +

β

2
(D23x

k+1
2 + D32x

k+1
3)

!

" #

$

%

16

Asynchronous ADMM

Asynchronous ADMM Algorithm

A Initialization: choose some arbitrary x0 in X , z0 in Z and p0 = 0.

B At time step k, an edge e = (i , j) and its end points become active.

a For q = i , j , the active primal variable xq is updated as

xk+1
q ∈ argmin

xq∈Xq

fq(xq)−
∑

e∈E(q)

(pk
eq)′Deqxq +

β

2

∑

e∈E(q)

∣∣∣
∣∣∣Deqxq − zk

eq

∣∣∣
∣∣∣

2

.

with xk+1
w = xk

w for w not active.

b To compute z update,

v k+1 = −pk
ei +

β

2
(Deix

k+1
i + Dejx

k+1
j),

zk+1
eq =

1

β
(−pk

eq − v k+1) + Deqxk+1
q .

c The active dual variables peq for q = i , j
are updated as

pk+1
eq = −v k+1.

pk
23

pk
32

vk+1

xk+1
2

xk+1
3

zk+1
32

zk+1
23

!

" #

$

%

16

Asynchronous ADMM

Asynchronous ADMM Algorithm

A Initialization: choose some arbitrary x0 in X , z0 in Z and p0 = 0.

B At time step k, an edge e = (i , j) and its end points become active.

a For q = i , j , the active primal variable xq is updated as

xk+1
q ∈ argmin

xq∈Xq

fq(xq)−
∑

e∈E(q)

(pk
eq)′Deqxq +

β

2

∑

e∈E(q)

∣∣∣
∣∣∣Deqxq − zk

eq

∣∣∣
∣∣∣

2

.

with xk+1
w = xk

w for w not active.

b To compute z update,

v k+1 = −pk
ei +

β

2
(Deix

k+1
i + Dejx

k+1
j),

zk+1
eq =

1

β
(−pk

eq − v k+1) + Deqxk+1
q .

c The active dual variables peq for q = i , j
are updated as

pk+1
eq = −v k+1.

vk+1

pk+1
23 pk+1

32

!

" #

$

%

Generalizes to any linear constraint Dx + Hz = 0.

16

Convergence Analysis

Convergence

Assumption

(a) (Infinitely often updates): For all k and all l in the set of linear constraints,
P(l is active at time k) > 0.

Theorem

Let {xk , zk , pk} be the iterates generated by the general asynchronous ADMM
algorithm. The sequence {xk , zk , pk} converges to a saddle point (x∗, z∗, p∗) of the
Lagrangian, i.e., (xk , zk) converges to a primal optimal solution (x∗, z∗) almost surely.

Proof Sketch

Define auxiliary full information iterates y k , v k and µk .

y k+1 ∈ argmin
y∈X

N∑

i=1

fi (yi)− (pk − βHzk)′Diy +
β

2
||Diy ||2 ,

v k+1 ∈ argmin
v∈Z

W∑

l=1

−(pk − βDy k+1)′Hlv +
β

2
||Hlv ||2 ,

µk+1 = pk − β(Dy k+1 + Hv k+1).

17

Convergence Analysis

Convergence Analysis – Idea

Active components of asynchronous iterates take the same value as full
information iterates, inactive components remain at their previous value.

Using the Lyapunov function 1
2β

∣∣∣∣pk+1 − p∗
∣∣∣∣2 + β

2

∣∣∣∣H(zk+1 − z∗)
∣∣∣∣2, we

can show full information iterates converge to an optimal solution.

To develop a Lyapunov function for the asynchronous iterates, define
probabilities

λl = P(l is active at time k)

and weighted norm induced by matrix Λ̄ where Λ̄ll = 1/λl .

Using supermartingale arguments, we show that the probability adjusted
norm,

1

2β

∣∣∣∣pk+1 − p∗
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(zk+1 − z∗)
∣∣∣∣2

Λ̄

serves as a Lyapunov function for the asynchronous iterates.

18

Convergence Analysis

Rate of Convergence

Assumption

(a) (Compact constraint set): Sets X and Z are compact.

Ergodic average: x̄i (k) =
∑k

t=1 xti
k

, for all i , z̄l(T) =
∑k

t=1 ztl
k

, for all l .

Theorem

For F (x) =
∑N

i=1 fi (xi), the iterates generated by the asynchronous ADMM algorithm
satisfies

||E(F (x̄(k)))− F (x∗)|| ≤ α

k
,

where α = ||p∗||∞
[
Q̄ + L̃0 + 1

2β

∣∣∣∣p0 − p∗
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
+

[
Q(p∗) + L̃(x0, z0, p∗) + 1

2β

∣∣∣∣p0 − θ̄
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
, for some scalar Q, Q̄, Λ̄,

θ̄, related to p∗ and size of set X and Z.

A similar rate result holds for the constraint violation ||E(Dx̄(k) + Hz̄(k))||.

19

Simulations

Simulations

Sample Network:

!

"# $#

%#

&#

f2(x2)

f1(x1)

f3(x3)

f4(x4)

f5(x5)
x1 = x2

x3 = x4

x1 = x4

x2 = x3

Asynchronous ADMM algorithm is compared against a gradient based
asynchronous gossip algorithm [Ram, Nedic, Veeravalli 09]

Tested in three 5−node graphs: sample network, line graph and
complete graph.

20

Simulations

Sample network

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

Primal Variable Evolution Asynchronous ADMM

Iteration

P
rim

al
 V

ar
ia

bl
es

x1
x2
x3
x4
x5

Figure: ADMM for the sample
network.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4
Primal Variable Evolution Asynchronous Gossip

Iteration

P
rim

al
 V

ar
ia

bl
es

x1
x2
x3
x4
x5

Figure: Asynchronous gossip for
the sample network.

To reach 5% neighborhood of the optimal solution: asynchronous ADMM
takes 80 iterations, asynchronous gossip takes 250 iterations.

21

Simulations

Line Graph

0 50 100 150 200 250 300
−1

0

1

2

3

4

5
Primal Variable Evolution Asynchronous ADMM Line Graph

Iteration

P
rim

al
 V

ar
ia

bl
es

x1
x2
x3
x4
x5

Figure: ADMM for the line
graph.

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Primal Variable Evolution Asynchronous Gossip Line

Iteration

P
rim

al
 V

ar
ia

bl
es

x1
x2
x3
x4
x5

Figure: Asynchronous gossip for
the line graph.

21 3 4 5

To reach 5% neighborhood of the optimal solution: asynchronous ADMM takes
70 iterations, asynchronous gossip takes 700 iterations.

22

Simulations

Complete Graph

0 50 100 150 200 250 300
−1

0

1

2

3

4

5
Primal Variable Evolution Asynchronous ADMM Complete Graph

Iteration

P
rim

al
 V

ar
ia

bl
es

x1
x2
x3
x4
x5

Figure: ADMM for the complete
graph.

0 50 100 150 200 250 300 350 400 450 500
−1

0

1

2

3

4

5
Primal Variable Evolution Asynchronous Gossip Complete Graph

Iteration

P
rim

al
 V

ar
ia

bl
es

x1
x2
x3
x4
x5

Figure: Asynchronous gossip for
the complete network.

To reach 5% neighborhood of the optimal solution: asynchronous ADMM
takes 140 iterations, asynchronous gossip takes 380 iterations.

23

Simulations

Image denoising

Given a noisy image measure b, recover the original image by solving the
following problem:

min
x

1

2
||x − b||22 + λ ||x ||TV ,

where ||x ||TV =
∑

i∼j |xi − xj |.

Original

50 100 150 200 250

50

100

150

200

250

Figure: Original
cameraman figure.

Noisy

50 100 150 200 250

50

100

150

200

250

Figure: Added white
noise with standard
deviation 25.

24

Simulations

Image denoising

Image data bi is available at two different sensors.

Original

50 100 150 200 250

50

100

150

200

250

Figure: Original
cameraman figure.

20 40 60 80 100 120

50

100

150

200

250

20 40 60 80 100 120

50

100

150

200

250

Figure: Noisy image
data in 2 parts.

25

Simulations

Image denoising

Recover the original image by solving the following problem:

min
x

1

2
||x − b1||22 +

1

2
||x − b2||22 + λ ||x ||TV ,

with asynchronous ADMM algorithm with 3 agents. Algorithm converged
after 87 iterations, 35 seconds on laptop.

Original

50 100 150 200 250

50

100

150

200

250

Figure: Original
cameraman figure.

20 40 60 80 100 120

50

100

150

200

250

20 40 60 80 100 120

50

100

150

200

250

Figure: Noisy image
data in 2 parts.

Recovered

50 100 150 200 250

50

100

150

200

250

Figure: Recovered using
total variation denoising
formula with λ = 20.

26

Conclusions

Conclusions and Future Work

For general convex problems, we developed an asynchronous distributed
ADMM algorithm, which converges at the best known rate O(1/k).

Simulation results illustrate the superior performance of ADMM (even for
network topologies with slow mixing).

Ongoing and Future Work:

Online and dynamic distributed optimization problems.
ADMM type algorithm for time-varying graph topology.
Analyze network effects on ADMM algorithm.

27

	Introduction
	Distributed ADMM Algorithms
	Asynchronous ADMM
	Convergence Analysis
	Simulations
	Conclusions

