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Introduction

Motivation

Many networks are large-scale and comprise of agents with local information
and heterogeneous preferences.

This motivated much interest in developing distributed schemes for control
and optimization of multi-agent networked systems.

Routing and
congestion control in
wireline and wireless
networks

Parameter estimation
in sensor networks

Multi-agent
cooperative control
and coordination

Smart grid systems
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Introduction

Distributed Multi-agent Optimization

Many of these problems can be represented within the general formulation:

A set of agents (nodes) {1, . . . ,N} connected through a network.

The goal is to cooperatively solve

min
x

N∑
i=1

fi (x)

s.t. x ∈ Rn,

fi (x) : Rn → R is a convex
(possibly nonsmooth) function,
known only to agent i .

Alternating Direction Methods

Distributed Optimization for General Objective Functions

Separability of objective function (with respect to a partition of the variables into
subvectors) crucial in the previous setting.
In many applications, objective functions nonseparable.
Agents M = {1, . . . , m} cooperatively
solve

minimize
�

i∈M
fi(x)

subject to x ∈ Rn,

fi(x) : Rn → R is a convex function,
representing local objective function of
agent i, known only to this agent.

We denote the optimal value by f ∗ and
optimal solution set by X∗ (assumed
nonempty).

f2(x1, . . . , xn)

fm(x1, . . . , xn)

f1(x1, . . . , xn)

The decision vector x can be viewed as either a resource vector whose subcomponents
correspond to resources allocated to each agent, or a global decision vector which the
agents are trying to compute using local information.

30

Since such systems often lack a centralized processing unit, algorithms for
this problem should involve each agent performing computations locally and
communicating this information according to the underlying network.
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Introduction

Machine Learning Example

A network of 3 sensors, supervised passive learning.

Data is collected at different sensors: temperature t, electricity demand d .

System goal: learn a
degree 3 polynomial
electricity demand model:

d(t) = x3t
3+x2t

2+x1t+x0.

System objective:

min
x

3∑
i=1

||A′ix − di ||22 .

where Ai = [1, ti , t
2
i , t

3
i ]′ at

input data ti .
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Introduction

Machine Learning General Set-up

A network of agents i = 1, . . . ,N.

Each agent i has access to local feature vectors Ai and output bi .

System objective: train weight vector x to

min
x

N−1∑
i=1

L(A′ix − bi ) + p(x),

for some loss function L (on the prediction error) and penalty function p (on
the complexity of the model).

Example: Least-Absolute Shrinkage and Selection Operator (LASSO):

min
x

N−1∑
i=1

||A′ix − bi ||22 + λ ||x ||1 .

Other examples from ML estimation, low rank matrix completion,
image recovery [Schizas, Ribeiro, Giannakis 08], [Recht, Fazel, Parrilo
10], [Steidl, Teuber, 10]
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Introduction

Existing Distributed Algorithms

Given an undirected connected graph G = {V ,E} with M nodes, we
reformulate the problem as

min
x

M∑
i=1

fi (xi )

s.t. xi = xj , for (i , j) ∈ E ,

!

"# $#

%#

&#

f2(x2)

f1(x1)

f3(x3)

f4(x4)

f5(x5)
x1 = x2

x3 = x4

x1 = x4

x2 = x3

Distributed gradient/subgradient methods for solving these problems:

Each agent maintains an local estimate, updates it by taking a (sub)gradient
step and averaging with neighbors’ estimates.

Best known convergence rate: O(1/
√

k).[Nedic, Ozdaglar 08], [Lobel,

Ozdaglar 09], [Duchi, Agarwal, Wainwright 12].
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Distributed ADMM Algorithms

Faster ADMM-based Distributed Algorithms

Classical Augmented Lagrangian/Method of Multipliers and Alternating
Direction Method of Multipliers (ADMM) methods: fast and parallel
[Glowinski, Marrocco 75], [Eckstein, Bertsekas 92], [Boyd et al. 10]:

Known convergence rates for synchronous ADMM type algorithm:

[He, Yuan 11] General convex O(1/k).
[Goldfarb et al. 10] Lipschitz gradient O(1/k2).
[Deng, Yin 12] Lipschitz gradient, strong convexity linear rate.

[Hong, Luo 12] Strong convexity linear rate.

Highly decentralized nature of the problem calls for an asynchronous
algorithm. Almost all known distributed algorithms are synchronous.1

In this talk, we present asynchronous ADMM-type algorithms for general
convex problems and show that it converges at the best known rate of
O(1/k) [Wei, Ozdaglar 13].

1Exceptions: [Ram, Nedic, Veeravalli 09], [Iutzeler, Bianchi, Ciblat, and Hachem
13] without any rate results.
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Distributed ADMM Algorithms

Standard ADMM

Standard ADMM solves a separable problem, where decision variable
decomposes into two (linearly coupled) variables:

min
x,y

f (x) + g(y) (1)

s.t. Ax + By = c .

Consider an Augmented Lagrangian function:

Lβ(x , y , p) = f (x) + g(y)− p′(Ax + By − c) +
β

2
||Ax + By − c ||22 .

ADMM: approximate version of classical Augmented Lagrangian method.

Primal variables: approximately minimize augmented Lagrangian
through a single-pass coordinate descent (in a Gauss-Seidel manner).
Dual variable: updated through gradient ascent.
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Distributed ADMM Algorithms

Standard ADMM

More specifically, updates are as follows:

xk+1 = argminx Lβ(x , yk , pk),

yk+1 = argminy Lβ(xk+1, y , pk),

pk+1 = pk − β(Axk+1 − Byk+1 − c).

Each minimization involves (quadratic perturbations of) functions f and g
separately.

In many applications, these minimizations are easy (quadratic
minimization, l1 minimization, which arises in Huber fitting, basis
pursuit, LASSO, total variation denoising). [Boyd et al. 10]
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Distributed ADMM Algorithms

ADMM for Multi-agent Optimization Problem

Multi-agent optimization problem can be reformulated in the ADMM
framework:

Consider a set of agents V = {1, . . . ,N} connected through an undirected
connected graph G = {V ,E}.
We introduce a local copy xi for each of the agents and impose xi = xj for
all (i , j) ∈ E .

min
x

N∑
i=1

fi (xi )

s.t. xi = xj , for (i , j) ∈ E ,

!
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f2(x2)

f1(x1)

f3(x3)

f4(x4)

f5(x5)
x1 = x2

x3 = x4

x1 = x4

x2 = x3
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Distributed ADMM Algorithms

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents: special case of
problem (1):

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1 2

xk+1
1 xk2

pk121

xk+1
1 = argminx1

f1(x1) + f2(xk2 )− (pk12)′(x1 − xk2 ) + β
2

∣∣∣∣x1 − xk2
∣∣∣∣2

2
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Distributed ADMM Algorithms

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents: special case of
problem (1):

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1 2

xk+1
1 xk+1

2

pk12 2

xk+1
2 =

argminx2
f1(xk+1

1 ) + f2(x2)− (pk12)′(xk+1
1 − x2) + β

2

∣∣∣∣∣∣xk+1
1 − x2

∣∣∣∣∣∣2
2
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Distributed ADMM Algorithms

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents: special case of
problem (1):

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1 2

xk+1
1 xk+1

2

pk12 2

xk+1
2 = argminx2

f2(x2) + (pk12)′x2 + β
2

∣∣∣∣∣∣xk+1
1 − x2

∣∣∣∣∣∣2
2
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Distributed ADMM Algorithms

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents: special case of
problem (1):

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1

xk+1
1 xk+1

2

pk+1
12 2

pk+1 = pk − β(xk+1
1 − xk+1

2 ).
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Asynchronous ADMM

Multi-agent Asynchronous ADMM - Problem Formulation

min
x

N∑
i=1

fi (xi )

s.t. xi = xj , for (i , j) ∈ E .

Reformulate to decouple xi and xj by introducing the auxiliary z variable
[Bertsekas, Tsitsiklis 89], which allows us to simultaneously update xi and
potentially improves performance.

Each constraint xi − xj = 0 for
edge e = (i , j) becomes

xi = zei , −xj = zej ,

zei + zej = 0.

!
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%#

&#

f2(x2)

f1(x1)

f3(x3)

f4(x4)

f5(x5)
x1 = x2

x3 = x4

x1 = x4

x2 = x3
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Asynchronous ADMM

Multi-agent Asynchronous ADMM - Algorithm

min
x,z

N∑

i=1

fi (xi )

s.t. xi = zei ,−xj = zej for (i , j) ∈ E ,

x ∈ X , i = 1, . . . ,N,

z ∈ Z .

!

"# $#

%#

&#
xk+1

3

xk
1

Set Z = {z | zei + zej = 0 for all e = (i , j)}.
Write constraint as Dx = z , set E (i): the set of edges incident to node i .

We associate an independent Poisson local clock with each edge.

At iteration k , if the clock corresponding to edge (i , j) ticks:

The constraint xi = zei , −xj = zej (subject to zei + zej = 0) is active.
The agents i and j are active.
The dual variables pei and pej associated with edge (i , j) are active.
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Asynchronous ADMM

Asynchronous ADMM Algorithm

A Initialization: choose some arbitrary x0 in X , z0 in Z and p0 = 0.

B At time step k , an edge e = (i , j) and its end points become active.

a The active primal variables xq for q = i , j are updated as

xk+1
q ∈ argmin

xq∈Xq

fq(xq)−
∑

e∈E(q)

(pkeq)′Deqxq +
β

2

∑
e∈E(q)

∣∣∣∣Deqxq − zkeq
∣∣∣∣2.

with xk+1
w = xkw for w not active.

b The active primal variables zei and zej are updated as

zk+1
ei , zk+1

ej ∈ argmin
zei+zej=0

∑
q=i,j

(pkeq)′zeq +
β

2

∣∣∣∣Deqx
k+1
q − zeq

∣∣∣∣2 .
with zk+1

l = zkl for l not active.
c The active dual variables peq for q = i , j are updated as

pk+1
eq = pkeq − β

[
Dqx

k+1
q − zk+1

eq

]
.

Update in z is a quadratic programming with linear constraint: has closed
form solution and can be easily computed in a distributed way.
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Asynchronous ADMM

Asynchronous ADMM Algorithm

A Initialization: choose some arbitrary x0 in X , z0 in Z and p0 = 0.

B At time step k, an edge e = (i , j) and its end points become active.

a For q = i , j , the active primal variable xq is updated as

xk+1
q ∈ argmin

xq∈Xq

fq(xq)−
∑

e∈E(q)

(pk
eq)′Deqxq +

β

2

∑

e∈E(q)

∣∣∣
∣∣∣Deqxq − zk

eq

∣∣∣
∣∣∣

2

.

with xk+1
w = xk

w for w not active.
b To compute z update,

v k+1 =
1

2
(−pk

ei − pk
ej) +

β

2
(Deix

k+1
i + Dejx

k+1
j ),

zk+1
eq =

1

β
(−pk

eq − v k+1) + Deqxk+1
q .

c The active dual variables peq for q = i , j are updated as

pk+1
eq = −v k+1.
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Asynchronous ADMM

Asynchronous ADMM Algorithm

A Initialization: choose some arbitrary x0 in X , z0 in Z and p0 = 0.

B At time step k, an edge e = (i , j) and its end points become active.

a For q = i , j , the active primal variable xq is updated as

xk+1
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xq∈Xq

fq(xq)−
∑

e∈E(q)

(pk
eq)′Deqxq +

β

2

∑

e∈E(q)

∣∣∣
∣∣∣Deqxq − zk

eq

∣∣∣
∣∣∣

2

.

with xk+1
w = xk

w for w not active.

b To compute z update,

v k+1 =
1

2
(−pk

ei−pk
ej)+

β

2
(Deix

k+1
i +Dejx

k+1
j ),

zk+1
eq =

1

β
(−pk

eq − v k+1) + Deqxk+1
q .

c The active dual variables peq for q = i , j
are updated as

pk+1
eq = −v k+1.

xk+1
3xk+1

2

pk
21, z

k
21 pk

25, z
k
25

pk
23, z

k
23 pk

32, z
k
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pk
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k
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Asynchronous ADMM
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Asynchronous ADMM
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1

2
(−pk

ei − pk
ej) +

β

2
(Deix

k+1
i + Dejx

k+1
j )

= −pk
ei +

β

2
(Deix

k+1
i + Dejx

k+1
j ),

zk+1
eq =

1

β
(−pk

eq − v k+1) + Deqxk+1
q .
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xk+1
2 , xk+1

3

pk
23 = pk

32

vk+1 =

− pk
23 +

β

2
(D23x

k+1
2 + D32x

k+1
3 )
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Asynchronous ADMM
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q .
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Generalizes to any linear constraint Dx + Hz = 0.
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Convergence Analysis

Convergence

Assumption

(a) (Infinitely often updates): For all k and all l in the set of linear constraints,
P(l is active at time k) > 0.

Theorem

Let {xk , zk , pk} be the iterates generated by the general asynchronous ADMM
algorithm. The sequence {xk , zk , pk} converges to a saddle point (x∗, z∗, p∗) of the
Lagrangian, i.e., (xk , zk) converges to a primal optimal solution (x∗, z∗) almost surely.

Proof Sketch

Define auxiliary full information iterates y k , v k and µk .

y k+1 ∈ argmin
y∈X

N∑

i=1

fi (yi )− (pk − βHzk)′Diy +
β

2
||Diy ||2 ,

v k+1 ∈ argmin
v∈Z

W∑

l=1

−(pk − βDy k+1)′Hlv +
β

2
||Hlv ||2 ,

µk+1 = pk − β(Dy k+1 + Hv k+1).
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Convergence Analysis

Convergence Analysis – Idea

Active components of asynchronous iterates take the same value as full
information iterates, inactive components remain at their previous value.

Using the Lyapunov function 1
2β

∣∣∣∣pk+1 − p∗
∣∣∣∣2 + β

2

∣∣∣∣H(zk+1 − z∗)
∣∣∣∣2, we

can show full information iterates converge to an optimal solution.

To develop a Lyapunov function for the asynchronous iterates, define
probabilities

λl = P(l is active at time k)

and weighted norm induced by matrix Λ̄ where Λ̄ll = 1/λl .

Using supermartingale arguments, we show that the probability adjusted
norm,

1

2β

∣∣∣∣pk+1 − p∗
∣∣∣∣2

Λ̄
+
β

2

∣∣∣∣H(zk+1 − z∗)
∣∣∣∣2

Λ̄

serves as a Lyapunov function for the asynchronous iterates.
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Convergence Analysis

Rate of Convergence

Assumption

(a) (Compact constraint set): Sets X and Z are compact.

Ergodic average: x̄i (k) =
∑k

t=1 xti
k

, for all i , z̄l(T ) =
∑k

t=1 ztl
k

, for all l .

Theorem

For F (x) =
∑N

i=1 fi (xi ), the iterates generated by the asynchronous ADMM algorithm
satisfies

||E(F (x̄(k)))− F (x∗)|| ≤ α

k
,

where α = ||p∗||∞
[
Q̄ + L̃0 + 1

2β

∣∣∣∣p0 − p∗
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
+

[
Q(p∗) + L̃(x0, z0, p∗) + 1

2β

∣∣∣∣p0 − θ̄
∣∣∣∣2

Λ̄
+ β

2

∣∣∣∣H(z0 − z∗)
∣∣∣∣2

Λ̄

]
, for some scalar Q, Q̄, Λ̄,

θ̄, related to p∗ and size of set X and Z.

A similar rate result holds for the constraint violation ||E(Dx̄(k) + Hz̄(k))||.
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Simulations

Simulations

Sample Network:
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f4(x4)

f5(x5)
x1 = x2

x3 = x4

x1 = x4

x2 = x3

Asynchronous ADMM algorithm is compared against a gradient based
asynchronous gossip algorithm [Ram, Nedic, Veeravalli 09]

Tested in three 5−node graphs: sample network, line graph and
complete graph.
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Simulations

Sample network
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Figure: ADMM for the sample
network.
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Figure: Asynchronous gossip for
the sample network.

To reach 5% neighborhood of the optimal solution: asynchronous ADMM
takes 80 iterations, asynchronous gossip takes 250 iterations.
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Simulations

Line Graph
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Figure: ADMM for the line
graph.
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Figure: Asynchronous gossip for
the line graph.
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To reach 5% neighborhood of the optimal solution: asynchronous ADMM takes
70 iterations, asynchronous gossip takes 700 iterations.
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Simulations

Complete Graph
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Figure: ADMM for the complete
graph.

0 50 100 150 200 250 300 350 400 450 500
−1

0

1

2

3

4

5
Primal Variable Evolution Asynchronous Gossip Complete Graph

Iteration

P
rim

al
 V

ar
ia

bl
es

 

 

x1
x2
x3
x4
x5

Figure: Asynchronous gossip for
the complete network.

To reach 5% neighborhood of the optimal solution: asynchronous ADMM
takes 140 iterations, asynchronous gossip takes 380 iterations.
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Simulations

Image denoising

Given a noisy image measure b, recover the original image by solving the
following problem:

min
x

1

2
||x − b||22 + λ ||x ||TV ,

where ||x ||TV =
∑

i∼j |xi − xj |.
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Figure: Original
cameraman figure.

Noisy
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Figure: Added white
noise with standard
deviation 25.
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Simulations

Image denoising

Image data bi is available at two different sensors.
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Figure: Original
cameraman figure.
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Figure: Noisy image
data in 2 parts.
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Simulations

Image denoising

Recover the original image by solving the following problem:

min
x

1

2
||x − b1||22 +

1

2
||x − b2||22 + λ ||x ||TV ,

with asynchronous ADMM algorithm with 3 agents. Algorithm converged
after 87 iterations, 35 seconds on laptop.
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Figure: Original
cameraman figure.
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Figure: Noisy image
data in 2 parts.

Recovered
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Figure: Recovered using
total variation denoising
formula with λ = 20.
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Conclusions

Conclusions and Future Work

For general convex problems, we developed an asynchronous distributed
ADMM algorithm, which converges at the best known rate O(1/k).

Simulation results illustrate the superior performance of ADMM (even for
network topologies with slow mixing).

Ongoing and Future Work:

Online and dynamic distributed optimization problems.
ADMM type algorithm for time-varying graph topology.
Analyze network effects on ADMM algorithm.
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