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The Plan

I’ll present a new parallel algorithm based on Strassen’s matrix
multiplication, called Communication Avoiding Parallel Strassen

The new Strassen-based parallel algorithm CAPS
is communication optimal

matches the lower bounds [B., Demmel, Holtz, Schwartz, ‘11]

is faster: in theory and in practice

I’ll also show performance results and talk about practical
considerations for using Strassen and CAPS

Strassen’s algorithm is not just a theoretical idea: it can be practical
in parallel and deserves further exploration
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Motivation: Strassen’s fast matrix multiplication (1969)

Strassen’s original algorithm uses 7 multiplies and 18 adds for n = 2.
Most importantly, it can be applied recursively.

Q1 = (A11 + A22) · (B11 + B22)

Q2 = (A21 + A22) · B11

Q3 = A11 · (B12 − B22)

Q4 = A22 · (B21 − B11)

Q5 = (A11 + A12) · B22

Q6 = (A21 − A11) · (B11 + B12)

Q7 = (A12 − A22) · (B21 + B22)

C11 = Q1 + Q4 − Q5 + Q7

C12 = Q3 + Q5

C21 = Q2 + Q4

C22 = Q1 − Q2 + Q3 + Q6

F (n) = 7 · F (n/2) + O(n2)

F (n) = Θ
(
nlog2 7

)

log2 7 ≈ 2.81
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Motivation: communication costs

Two kinds of costs:

Arithmetic (FLOPs)

Communication: moving data

between levels of a memory hierarchy (sequential case)
over a network connecting processors (parallel case)

Communication will only get more expensive relative to arithmetic
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Motivation: communication costs

γ = time per FLOP

β = time per word

α = time per message

F = #Flops

BW = #Words

L = #Messages

Running time = γ · F + β · BW + α · L
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Communication lower bounds for matrix multiplication

Classical (cubic):

[Hong & Kung 81]

Combinatorial proof

Sequential only
Ω

((
n√
M

)log2 8

M

)

[Irony, Toledo, Tiskin 04]

Geometric proof

Sequential and parallel
Ω

((
n√
M

)log2 8 M

P

)

Ω

(
n2

P2/log2 7

)
Ω

(
n2

P2/log2 8

)
Memory independent bound [B., Demmel, Holtz, Lipshitz, Schwartz 12]
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Communication lower bounds for matrix multiplication
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Communication lower bounds for matrix multiplication

Algorithms attaining these bounds?
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Lessons from lower bounds

1 Don’t use a classical algorithm for the communication

Strassen can communicate less than classical

Strassen: Ω

((
n√
M

)log2 7
M
P

)
Classical: Ω

((
n√
M

)log2 8
M
P

)

2 Use all available memory

Communication bound decreases with increased memory
Up to a factor of O(P1−2/ log2 7) extra memory is useful

Strassen: Ω

(
max

{(
n√
M

)log2 7
M
P ,

n2

P2/ log2 7

})
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Simple “2D” Classical Algorithm

Here’s the basic communication pattern for the classical “2D” algorithm:

A B C

2D: think Cannon or SUMMA

[Cannon 69, van de Geijn & Watts 97]

2.5D: think reduced communication by using more memory

[Solomonik & Demmel 11]
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Previous parallel Strassen-based algorithms

2D-Strassen: [Luo & Drake 95]

Run classical 2D inter-processors.

Same communication costs as classical 2D.

Run Strassen locally.

Can’t use Strassen on the full matrix size.

Strassen-2D: [Luo & Drake 95; Grayson, Shah, van
de Geijn 95]

Run Strassen inter-processors

This part can be done without communication.

Then run classical 2D.

Communication costs grow exponentially with
the number of Strassen steps.

Neither is communication optimal, even if you use 2.5D
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Main idea of CAPS algorithm

At each level of recursion tree, choose either breadth-first or depth-first
traversal of the recursion tree

Breadth-First-Search (BFS) Depth-First-Search (DFS)

Runs all 7 multiplies in parallel

each uses P/7 processors

Requires 7/4 as much extra memory

Requires communication, but

All BFS minimizes communication if
possible

Runs all 7 multiplies sequentially

each uses all P processors

Requires 1/4 as much extra memory

No immediate communication

Increases bandwidth by factor of 7/4

Increases latency by factor of 7

Grey Ballard 9



Tuning the choices of BFS and DFS Steps
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Asymptotic costs analysis

Flops Bandwidth Cost
S
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se
n

Lower Bound nlog2 7

P max
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Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), n = 65,856.
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Performance: Model vs Actual
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Performance of CAPS on large problems

Strong-scaling on Hopper (Cray XE6), n = 131,712.
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Performance of CAPS on small (comm-bound) problems

Strong-scaling on Intrepid (left) and Hopper (right), n = 4704.
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Practical Considerations for Strassen

1 Harder to reach actual peak performance

computation to communication ratio smaller than classical

2 Additions and multiplications are no longer balanced

3 Architectures are based on powers of 2 not 7

CAPS prefers P = m · 7k

Intrepid requires allocation of power of two number of nodes

4 Stability bounds are not as strong as for classical

Grey Ballard 16



Stability - why you shouldn’t worry

CAPS has the same stability properties as any other Strassen
(Strassen-Winograd) algorithm

Weaker stability guarantee than classical, but still norm-wise stable
This can be improved with techniques like diagonal scaling

Taking fewer Strassen steps improves the bound

Theoretical bounds are pessimistic in the typical case

 1e-14
 1e-12
 1e-10
 1e-08
 1e-06

 0.0001
 0.01

 1
 100

 0  2  4  6  8  10  12

M
a
x
-n

o
rm

 E
rr

o
r

Number of Strassen Steps

Theoretical bound
Actual

Grey Ballard 17



Stability - why you shouldn’t worry

CAPS has the same stability properties as any other Strassen
(Strassen-Winograd) algorithm

Weaker stability guarantee than classical, but still norm-wise stable
This can be improved with techniques like diagonal scaling

Taking fewer Strassen steps improves the bound

Theoretical bounds are pessimistic in the typical case

 1e-14
 1e-12
 1e-10
 1e-08
 1e-06

 0.0001
 0.01

 1
 100

 0  2  4  6  8  10  12

M
a
x
-n

o
rm

 E
rr

o
r

Number of Strassen Steps

Theoretical bound
Actual

Grey Ballard 17

‖C−A·B‖
‖A‖‖B‖

↑
Classical

Diagonal Scaling



Summary

The CAPS matrix multiplication algorithm

1 is communication optimal

2 is faster: in theory and in practice

3 can be practical and should be used and improved
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Effective vs Actual Performance
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Communication-Free DFS

Possible if each processor owns corresponding entries of four submatrices
of A, B, and C . [Luo & Drake 95; Grayson, Shah, van de Geijn 95]

Additions of submatrices of A to form the Ti (no communication)

Additions of submatrices of B to form the Si (no communication)

Recursive calls Qi = Ti · Si (communication deeper in recursion tree)

Additions of the Qi to form submatrices of C (no communication)

A

T
0

T
1

. . .

local additions
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Communication Pattern of BFS

Additions of submatrices of A,B to form Ti ,Si (no communication)

Redistribution of the Ti ,Si (communication)

Recursive calls Qi = Ti · Si (communication deeper in recursion tree)

Redistribution of the Qi (communication)

Additions of the Qi to form submatrices of C (no communication)

Redistributions are disjoint 7-way all-to-all communications.

A

T
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T
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T
0

T
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local additions communication

1 

. . .

. . .
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BFS on 7 Processors

Requires 3 all-to-all communications, one for each of A, B, C
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Sequential Performance
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Data Layout
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Strassen-Winograd Algorithm

(
C11 C12

C21 C22

)
= C = A · B =

(
A11 A12

A21 A22

)
·
(

A11 A12

A21 A22

)

Qi = Si · Ti

S0 = A11 T0 = B11 U1 = Qi + Q4

S1 = A12 T1 = B21 U2 = U1 + Q5

S2 = A21 + A22 T2 = B12 + B11 U3 = U1 + Q5

S3 = S2 − A12 T3 = B22 − T2 C11 = Q1 + Q2

S4 = A11 − A21 T4 = B22 − B12 C12 = U3 + Q6

S5 = A12 + S3 T5 = B22 C21 = U2 − Q7

S6 = A22 T6 = T3 − B21 C22 = U2 + Q3

Grey Ballard 27

Extras



Performance Breakdown: Model vs Actual
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Performance on Franklin for small problem

n = 3136 on Franklin
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Performance of CAPS on large problem

Strong-scaling on Franklin (Cray XT4), n = 94,080.
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Sequential recursive Strassen is communication optimal

Run Strassen algorithm recursively.

When blocks are small enough, work in local memory, so no further
bandwidth cost

W (n,M) =

{
7W (n2 ,M) + O(n2) if 3n2 > M
O(n2) otherwise

Solution is

W (n,M) = O

(
nω0

Mω0/2−1

)
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Diagonal Scaling

Outside scaling:

Scale so each row of A and each column of B has unit norm.

Explicitly:

Let DA
ii = (‖A(i , :)‖)−1, and DB

jj = (‖B(:, j)‖)−1.

Scale A′ = DAA, and B ′ = BDB .
Use Strassen for the product C ′ = A′B ′.

Unscale C =
(
DA
)−1

C ′
(
DB
)−1

.

Inside scaling:

Scale so each column of A has the same norm as the corresponding
row of B.

Explicitly:

Let Dii = (‖A(:, i)‖/‖B(i , :)‖)−1/2.
Scale A′ = AD, and B ′ = D−1B.
Use Strassen for the product C = A′B ′.
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Stability: easy case
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Stability: more interesting case
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Stability: problems scaling can’t fix
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Discussion / open problems

Our parallelization approach extends to other matrix multiplication
algorithms:

classical matrix multiplication (matching the 2.5D algorithm)

other fast matrix multiplication algorithms

And to other algorithms with recursive formulations?

Make use of CAPS within other linear algebra algorithms
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Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), n = 65,856.
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Performance: Model vs Actual
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Extra slides

1 Performance: Model vs Actual

2 Time breakdown

3 DFS vs BFS

4 BFS on 7 Processors

5 Sequential Performance

6 Data Layout

7 Strassen-Winograd Algorithm

8 Actual vs Effective Performance

9 Small problem on Franklin

10 Big problem on Franklin

11 Diagonal Scaling

12 Open Problems
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