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Outline of the talk

e Find a natural definition of influences for functions f(W41,..., W,) where
W; are i.i.d. standard Gaussians.

o Gaussian analogues of many fundamental results of discrete harmonic
analysis.

o Kahn-Kalai-Linial (KKL) bound,
o Threshold phenomenon for monotone events,

o Benjamini-Kalai-Schramm (BKS) noise sensitivity theorem, etc.

@ Extensions to other probability measures.
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Influences of boolean functions

o f:{-1,1}" — {0,1} with product Bernoulli measure on {0,1}". The
influence of j-th coordinate on f

Li(f) = P(f(x) # f(7i(2))),
where 7;(z) = (z1,...,~Zj,...,Tn).
o Examples.

Majority: f(z) = Lisn aion/2)- Li(f) = 1/\/n for all j.
Dictator: f(z) = z1. Ii(f)=1and I;(f) =0 for j > 1.

@ Applications in phase transitions, percolation, hardness of approximation,
statistical learning, social choice theory, extremal combinatorics, metric
embeddings, ...
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Why useful?

Geometric/ Isoperimetric meaning: For set Ac {-1,1}",

DI (A) = Q(n 5 #{ edges between A and A°}.
=1

Edge boundary of A

@ KKL's lower bound on max influence

@ Connection to Russo’s formula
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Kahn - Kalai- Linial (KKL) theorem

o f:{-1,1}" - {0,1}
Efron-Stein bound:

Var(f) < z 5L(f)

= max [;(f) >
1<j<n

Var(f)

o Nontrivial bound by KKL ('88):
max Li(f) > Var(f). Q(logn

(also holds for product Ber(p) measure)
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Russo’s formula

@ Let u, denote the Ber(p).

o Clearly if Ac{-1,1}" is increasing then p — g™ (A) is monotone
increasing.

@ Russo's Lemma: A c {-1,1}" increasing,

dﬂpn(A) Zj: P(A).
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An application: threshold phenomenon for monotone sets

Theorem (Threshold phenomenon, Friedgut & Kalai '96)

Let Ac {-1,1}" monotone transitive. Then
pp (A ze = pg"(A)21-e

where q = p + clog(1/2¢)(logn)™ .
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An application: threshold phenomenon for monotone sets

Theorem (Threshold phenomenon, Friedgut & Kalai '96)

Let Ac {-1,1}" monotone transitive. Then
pp (A ze = pg"(A)21-e

where q = p + clog(1/2¢)(logn)™ .

@ Erdos-Rényi random graph: Take a complete graph on n vertices. Let
N = (;) Each of IV edges is present independently with probability p.

Graph property: events that are closed under relabeling of the vertices.

@ A = nontrivial monotone graph property c {0,1}".
e.g. connected, triangle-free, hamiltonian, non-planar, ...

@ Bourgain & Kalai '97: The threshold interval for monotone graph
properties is ~ (log n)’Q*"(l)_
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Influences in continuous probability space

@ How can we define influences for f: (R", u®") - {0,1}?
Several existing definitions.

e BKKKL influence (Bourgain-Kahn-Kalai-Katznelson-Linial '92)
]P’{;c e R™: f is not constant on the fiber (z1,..., i1, Tis1, .- ,xn)}
o KKL bound still holds.

o Lacks geometric meaning.

@ ‘Variance' influence of f (Hatami’09, Mossel-O'Donnell-Oleszkiewicz '09)

EVar;(flz ~ {zi}).

o Reasonable
o No KKL type bound.

On [07 1]77,’ f(.l’) = 1{maxzi£17n*1}v ]E[f] = 6717 Ij(f) xnt vj.
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Our definition : Geometric influence

The geometric influence of the j-th coordinate on A ¢ (R™,v®") is

19(A) = f VT (A)2™(dx) € [0, +oo]

where

Af = {y eR: (1, ., Tjo1,Y,Tjs1,...,Tn) € A}
and m ©
V(A7 + [-rr]) - v(A7)

*(A%) := liminf
v (A7) imin "

is the surface measure (lower Minkowski content) of the section A7.

e.g. v"([a,b]) = ¢(a) + ¢(b), when v has a density ¢.
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Our definition : Geometric influence

The geometric influence of the j-th coordinate on A ¢ (R™,v®") is

19(A) = f VT (A)2™(dx) € [0, +oo]

where

A;D = {y eR: (xl,...,xj_l,y,xﬁh...,mn) € A}
and m ©
V(A7 + [-rr]) - v(A7)

*(A%) := liminf
v (A7) 1I£1&)n "

is the surface measure (lower Minkowski content) of the section A7.
e.g. v"([a,b]) = ¢(a) + ¢(b), when v has a density ¢.
° Ijg(A) = [10;14v®" (dx) ( L'-norm of 9;1.4).

@ The definition of Ijg(A) does not depend on the product structure of the
measure 1"
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Geometric interpretation : connection to L boundary

Let v be a probability measure on R with a 'nice’ density. Let A c R"™ be a
monotone set. Then

v (A +[-r,r]™) - v®"(A) _ i[-g(A).

lim inf
70 T

V& (A+[-r,r]™)-v®" (A)

o In literature, liminf, o
uniform enlargement.

is called boundary under

@ Also true for convex sets. But not for general sets, e.g. Q".
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KKL-type bound for Gaussian measure

Theorem (Keller-Mossel-S-12)

Consider the product spaces R™ endowed with the product Gaussian measure
u®" . Then for any Borel-measurable set A c R™ with u®"(A) =t

Viogn

g —_ —_—
{rslias)lei (A) > ct(1-¢t) =

where ¢ > 0 is a universal constant.
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KKL-type bound for Gaussian measure

Theorem (Keller-Mossel-S-12)

Consider the product spaces R™ endowed with the product Boltzmann
measure &™. Then for any Borel-measurable set A c R"™ with p®"(A) =t

)

1-1/p
max IZ(A) > ct(1 - t)%
<21<n n

where ¢ > 0 is a universal constant.

@ The Boltzmann measure p, with parameter p > 1 is given by

p(dz) = Coe ™ dz, zeR.
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KKL-type bound for Gaussian measure

Theorem (Keller-Mossel-S-12)

Consider the product spaces R™ endowed with the product . Then for any
Borel-measurable set A c R™ with u®™(A) =t

)(10gn)1’1/p

g -
{131%)72]1- (A)>ct(1-t -

)

where ¢ > 0 is a universal constant.

@ The Boltzmann measure p, with parameter p > 1 is given by

pp(dz) = Coe ™ dz, zeR.

@ The proof uses isoperimetric inequality for Boltzmann measures
Isoperimetric function: 7, ,(t) > cmin(¢,1 - t)(-logmin(t,1 - t))e

+ the original KKL bound via h-influences.
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Tightness

o Example: Semi-infinite box.

Let By := [-00,b,]" where by, is chosen such that 3" (By) =t <1/2
fixed. Then

1-1/p

1¢(B,) < ct%,
n

forall 1<j<n.
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Talagrand’s variance bound

Theorem (Talagrand '94)

For any f:{-1,1}" — R with product Bernoulli measure v*"

|D; f15
1+1log(|D; fll2/1D; £ 1)

Var(f)<C i
j=1

Djf(z) = f(mjz) - f ().

If f=14 with v®°"(A) =t, then the above inequality becomes

, & I;i(A 2
1-1)<C zﬁ (1D FI2 = I;(A), |D; f11 = I;(A)).
= KKL bound.

Theorem (Gaussian analogue)

Consider R"™ with the product Boltzmann measure u&™. Let A c R".
If u®*(A) = t, then

o B
=D <0 Y Ciogrscay
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Talagrand's bound in Markov semigroup (Cordero-Erausquin, Ledoux)

@ Let P; be reversible Markov semigroup on X with generator L and p is
the invariant probability measure. The associated Dirichlet form

E(f,9) =~ f fLgdp.
@ Suppose
£ =Y [ Ty,
and for some k € R,

Li(Pi(f)) < e™ Po(Tu(f)).

@ Suppose L also satisfies log-Sobolev inequality

pEnt(f*) <2&(f, f).
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Talagrand's bound in Markov semigroup (Cordero-Erausquin, Ledoux)

@ Let P; be reversible Markov semigroup on X with generator L and p is
the invariant probability measure. The associated Dirichlet form

E(f,9) =~ f fLgdp.
@ Suppose
£ =Y [ Ty,
and for some k € R,

Li(Pi(f)) < e™ Po(Tu(f)).

@ Suppose L also satisfies log-Sobolev inequality

pEnt(f*) <2&(f, f).

Theorem (Cordero-Erausquin, Ledoux '12)

IT: 115
1+1log(| T fll2/ITef]1)’

Var, () < C(p, ) Z

where C(p, k) = 4147+ [,

L' norm of T';(f) serves as a natural candidate for ‘influence’ of f in the i-th

direction
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Examples

@ Bonami-Beckner semigroup. p = uniform measure on {-1,1}".
Ef,f) =3 Sa|DifPdp. k=0and p=1.
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Examples

@ Bonami-Beckner semigroup. p = uniform measure on {-1,1}".
Ef,f) =3 Sa|DifPdp. k=0and p=1.

@ Gaussian case (Ornstein-Uhlenbeck semigroup).
p(dz) = @ eV ® dg on R™. The semigroup is generated by
L=%7, 07 - V{(x)o;.

&)= [ losran

Under the assumption V' >¢>0, k= —-c and p=c.
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Examples

@ Bonami-Beckner semigroup. p = uniform measure on {-1,1}".
Ef,f) =3 Sa|DifPdp. k=0and p=1.

@ Gaussian case (Ornstein-Uhlenbeck semigroup).
p(dz) = @ eV ® dg on R™. The semigroup is generated by
L=%7, 07 - V{(x)o;.

&)= [ losran

Under the assumption V' >¢>0, k= —-c and p=c.

@ Transposition walk on S,,. @ = uniform measure on S,,. T = set of
transpositions.

e =g [ SIDAPdn, Df(@) = f(s0) - 1(0).

k=0and p~ (nlogn)™.
O'Donnell-Wimmer '09, O'Donnell-Wimmer '13
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Talagrand’s bound for sets

@ In the Gaussian set-up, when f =14, the meaning of ||0; f|2 is not clear.

@ Cordero-Erausquin and Ledoux proved that for all | f]e <1,

o [0 (1 + [0 )
V: <C
D <O e T

which implies KKL bound for Gaussian measures.

o Useful fact: For every ||f|le <1 and every 0 <t < 1/2,

[0: Pe f oo < P, = OU semigroup.

*
Vit
It helps to bound 0; P f|p,p>1 by |0 P.f]1.
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Russo’s formula and threshold

Let pg = N(0,1). Let AcR"™ be increasing.

dpe®" (4) _ 3
R
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Russo’s formula and threshold

Let pg = N(0,1). Let AcR"™ be increasing.

dpe®" (4) _ 3
R

Proof. %]Ef(X1 +97 ceey Xn+9) = ZEBlf(Xl +0, . ,Xn+9), X~ N(O, 1).

i=1

Let 1o = N(0,1). Let AcR"™ be an increasing and transitive

W) >e = pdr(A)>1-¢

where 0, = 0o + clog(1/2€) (logn) /2.

@ Threshold window is tight for A = {maxi X; > Median(max; Xl)}
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Noise Sensitivity in discrete cubes

@ Let X be uniform on {-1,1}" and X" be a n-noisy copy of X.

X; wp. 1-9
X7 = J
j_{

X wp. n , independently for each j.
j . .

@ For f:{-1,1}" - R and n € (0, 1), the noise sensitivity of f,
VAR(f,n) =E[f(X)f(X")] - E[f(X)]E[f(X™)].
fe:{-1,1}"* > R is asymptotically noise-sensitive if
VAR(fi,n) "570 V>0
(= > fe(8) 50 vaz1)

0<|S|<d

o Example: The event of having a L-R crossing in the box [0,7]? for the
critical percolation in Z2.
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Noise Sensitivity in discrete cubes

@ Let X be uniform on {-1,1}" and X" be a n-noisy copy of X.

X; wp. 1-9
X7 = J
j_{

X wp. n , independently for each j.
j . .

@ For f:{-1,1}" - R and n € (0, 1), the noise sensitivity of f,
VAR(f,n) =E[f(X)f(X")] - E[f(X)]E[f(X™)].
fe:{-1,1}"* > R is asymptotically noise-sensitive if

VAR(fi,n) "7 0 ¥n>0
(= > fe(8) 50 vaz1)

0<|S|<d

o Example: The event of having a L-R crossing in the box [0,7]? for the
critical percolation in Z2.

@ Benjamini, Kalai, Schramm (1999): A, c {-1,1}"* is asymptotically
noise-sensitive if .
LA 570,
J
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Gaussian Noise Sensitivity

e W,W' ~ N(0,I) independent and W* = /1 - p2W + pW'.

@ For f:R"™ - R and p € (0,1), the Gaussian noise sensitivity of f,

VARY(f,p) = ELf (W) f(W*)] - E[f(W)]ELf (W*)].

@ Gaussian BKS theorem (Keller, Mossel, S. '13): A, ¢ R™* is
asymptotically Gaussian noise-sensitive if

YT (AR S0,
7
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Quantitive BKS

Theorem (Keller and Kindler (2013))

For f:{-1,1}" - [0,1] and n € (0,1)

cn

VAR(f.n) < C( D 1,(1)?)

Theorem (Gaussian analogue)

For f :R™ - [0,1] and p € (0,1),

cp2

VARY(f,0) < C( T 10:£11)
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Proof of Quantitive Gaussian BKS
o For simplicity take n=1 and f:R - [0,1] in C.

X++X

NG

@ Use CLT to approximate (W, W*) by (X”\'/‘%X"’ ,

n=1-+/1-p? and m — oo.

Use Quantitive BKS to f(%) {-1,1}"" > R.

™) with

m—>oo

VARY (f(W),p) as m — oo.

VAR(f(31255m), )

Observation.

SR Ay Ly - 4% ()2,
J=1

NG
Proof.
v () \/_E‘f( ) et )
N mi ,X2+...+Xm
" Vm ok N )’
2B/ (W)
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Gaussian BKS using semigroup techniques

@ Bouyrie (2013) gave a direct proof using standard semigroup tools.

o For any f on the Gaussian space and ¢ > 0,

1-e=t
2

VAR(f7 V1- e_4t) = Var(Ptf) < 4e_t( i Hajf”%) “f“é+e_t.
j=1

[P, = OU semigroup.]
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Correlation of increasing sets

Theorem (Talagrand’ 96)

For any pair of increasing subsets A, B ¢ {-1,1}",

V8" (AN B) - /7 (A)®"(B) > cp(> Li(A)L(B)),

i=1

where v®" = product Bernoulli measure and p(z) = z/log(e/x).

Theorem (Gaussian analogue)

For any pair of increasing subsets A, B ¢ R™,

KA B) - i (A" (B) > cp(Y. I8 (A)IF (B)),

=1

where u®" = standard Gaussian measure and () = z/log(e/z).

N
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Correlation of increasing sets

Theorem (Talagrand’ 96)

For any pair of increasing subsets A, B ¢ {-1,1}",

V8" (AN B) - /7 (A)®"(B) > cp(> Li(A)L(B)),

i=1

where v®" = product Bernoulli measure and p(z) = z/log(e/x).

Theorem (Gaussian analogue)

For any pair of increasing subsets A, B ¢ R™,

KA B) - i (A" (B) > cp(Y. I8 (A)IF (B)),

=1

where u®" = standard Gaussian measure and () = z/log(e/z).

N

Is there a direct semigroup proof?
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Thank You !!
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