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Junta approximations

How can we simplify a function f : {0,1}" — R?

’\IR

In this talk:
@ How well can we approximate f by a function g of few variables?

Def.: g approximates f within e in Lp, if

If = gllp = (E[If(x) = g)IPD)'/P < e
(in this talk, the uniform distribution)
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Friedgut’s Theorem

Definition (Average sensitivity)

The average sensitivity, or total influence, of f: {0,1}" — {0,1} is

n

Infl(f) = Pr[f(x) # f(x @ &))].
— xe{0.1}n

Theorem (Friedgut '98)

For any function f : {0,1}" — {0, 1} of average sensitivity Infl(f) and
every e > 0, there is a function g depending on 2°(nf(")/€) variables
such that ||[f — g||1 <e.
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Junta approximations of real-valued functions

We investigate classes of real-valued functions 7 : {0,1}"” — [0, 1]:
@ submodular functions: f(x vV y) + f(x A y) < f(x) + f(y)
@ XOS functions: f(x) = max; »; ajX;
@ subadditive functions: f(x v y) < f(x) + f(y)
@ self-bounding functions: f(x) > >;(f(x) — f(x ® &)+
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Junta approximations of real-valued functions

We investigate classes of real-valued functions 7 : {0,1}"” — [0, 1]:
@ submodular functions: f(x vV y) + f(x A y) < f(x) + f(y)
@ XOS functions: f(x) = max; »; ajX;
@ subadditive functions: f(x v y) < f(x) + f(y)
@ self-bounding functions: f(x) > >;(f(x) — f(x ® &)+

Why these classes?

@ Nice mathematical properties
@ Role in game theory as valuation functions on bundles of goods

[Balcan-Harvey '11] Can we learn valuations from random examples?
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Submodular functions

Submodularity = property of diminishing returns.

Let the marginal value of element j be 9;f(S) = f(SU {j}) — f(S).
(we identify f(S) = f(1s))

Definition: f is submodular, iffor Sc T
j cannot add more value to T than S.

0;f(S) = 9;f(T)

Equivalently: f(Au B) + f(An B) < f(A) + f(B).
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Subadditive and Fractionally Subadditive functions

Definition: f is subadditive, if f(AU B) < f(A) + f(B) for all A, B.

Definition: f is fractionally subadditive,

if /(T) <> aif(S))
whenever 17 <3 aj1g,.
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Subadditive and Fractionally Subadditive functions

Definition: f is subadditive, if f(AU B) < f(A) + f(B) for all A, B.

Definition: f is fractionally subadditive,

if /(T) <> aif(S))
S Sl .. whenever 17 <3 aj1g,.

Definition: f is an XOS function,
if f is @ maximum over linear functions: f(x) = max; > a;x; (a; > 0)

Fact (for monotone functions with f(0)) = 0)
Submodular C Fract. Subadditive = XOS C Subadditive Functions
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Self-bounding functions

Definition: A function f : D" — R is a-self-bounding, if

n

Z(f(X) - }r/nelgf(x'l y ooy Xies Vi Xigty oo »Xn)) < af(X).

=1 !

Theorem: [Boucheron, Lugosi, Massart, 2000]

1-Lipschitz 1-self-bounding functions under product distributions are

concentrated around E[f] with standard deviation O(,/E[f]) and
Prf(X) < E[f] — f] < e F/2E Pr{f(X) > E[f] + f] > e ©/@E1+0),
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Self-bounding functions

Definition: A function f : D" — R is a-self-bounding, if

n

Z(f(x) — min f(X1a' sy X1y Vi Xigty o »Xn)) < af(X).
yieD

i=1
Theorem: [Boucheron, Lugosi, Massart, 2000]
1-Lipschitz 1-self-bounding functions under product distributions are

concentrated around E[f] with standard deviation O(,/E[f]) and
Prf(X) < E[f] — f] < e F/2E Pr{f(X) > E[f] + f] > e ©/@E1+0),

XOS c 1-Self-bounding functions.
Submodular C 2-Self-bounding functions.
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Overview of our function classes

a-self-bounding
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Related work (learning of submodular functions)

[Balcan-Harvey ’11]
@ initiated the study of learning of submodular functions

@ gave a learning algorithm for product distributions, using
concentration properties of Lipschitz submodular functions

@ proved a negative result for general distributions
(no efficient learning within factors better than n'/3)
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Related work (learning of submodular functions)

[Balcan-Harvey ’11]
@ initiated the study of learning of submodular functions

@ gave a learning algorithm for product distributions, using
concentration properties of Lipschitz submodular functions

@ proved a negative result for general distributions
(no efficient learning within factors better than n'/3)

[Gupta-Hardt-Roth-Ullman "11]
@ learning of submodular fn. with applications in differential privacy
@ decomposition into n°(1/<) e-Lipschitz functions.
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Related work (learning of submodular functions)

[Balcan-Harvey ’11]
@ initiated the study of learning of submodular functions

@ gave a learning algorithm for product distributions, using
concentration properties of Lipschitz submodular functions

@ proved a negative result for general distributions
(no efficient learning within factors better than n'/3)

[Gupta-Hardt-Roth-Ullman "11]
@ learning of submodular fn. with applications in differential privacy
@ decomposition into n°(1/<) e-Lipschitz functions.
[Cheraghchi-Klivans-Kothari-Lee ’12]
@ learning based on Fourier analysis of submodular functions
@ submodular fns are e-approximable by polynomials of degree 1/¢?
@ learning for uniform distributions, using n°/<*) random examples
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Related work (cont’d)

[Rashodnikova-Yaroslavtsev’13, Blais-Onak-Servedio-Yaroslavtsev’'13]

@ learning/testing of discrete submodular functions (k possible
values), using kO(k109k/) poly(n) value queries

@ c-approximation by a junta of size (k log %)O(k)
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Related work (cont'd)

[Rashodnikova-Yaroslavtsev’13, Blais-Onak-Servedio-Yaroslavtsev’'13]

@ learning/testing of discrete submodular functions (k possible
values), using kO(k109k/) poly(n) value queries

@ c-approximation by a junta of size (k log %)é(k)

[Feldman-Kothari-V. ’13]
@ e-approximation of submodular functions by decision trees of
depth O(1/¢2), and hence juntas of size 20(1/<*)
@ PAC-learning using 2°P°Y(1/9) poly(n) random examples
(vs. [CKKL12] nPol¥(1/€) examples but in the agnostic setting)
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Related work (cont'd)

[Rashodnikova-Yaroslavtsev’13, Blais-Onak-Servedio-Yaroslavtsev’'13]
@ learning/testing of discrete submodular functions (k possible
values), using kO(k109k/) poly(n) value queries
@ c-approximation by a junta of size (klog 1)9)

[Feldman-Kothari-V. ’13]

@ e-approximation of submodular functions by decision trees of
depth O(1/¢2), and hence juntas of size 20(1/<*)

@ PAC-learning using 2°P°Y(1/9) poly(n) random examples
(vs. [CKKL12] nPol¥(1/€) examples but in the agnostic setting)

QUESTIONS:
@ Why is this restricted to submodular functions?
@ Is the junta of size 2°(1/<*) related to Friedgut's Theorem?
@ What are the best juntas that we can achieve?
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Our results
[to appear in FOCS’13]

Result 1:

@ XOS and self-bounding functions can be e-approximated in L, by
juntas of size 20(1/¢*)
@ This follows from a "real-valued Friedgut’s theorem"
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Our results
[to appear in FOCS’13]

Result 1:
@ XOS and self-bounding functions can be e-approximated in L, by
juntas of size 20(1/¢*)
@ This follows from a "real-valued Friedgut’s theorem"
Result 2:
@ Submodular fns can be e-approximated by O(; log 1)-juntas

@ Proof avoids Fourier analysis, uses concentration properties +
"boosting lemma" from [Goemans-V. '04]
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Our results
[to appear in FOCS’13]

Result 1:
@ XOS and self-bounding functions can be e-approximated in L, by
juntas of size 20(1/¢*)
@ This follows from a "real-valued Friedgut’s theorem"
Result 2:
@ Submodular fns can be e-approximated by O(; log 1)-juntas

@ Proof avoids Fourier analysis, uses concentration properties +
"boosting lemma" from [Goemans-V. '04]

Applications to learning:

@ Submodular, XOS and monotone self-bounding functions can be
PAC-learned in time 2°P°Y(1/9) poly(n) within La-error e

@ Submodular functions can be "PMAC"-learned in time
2poly(1/€) poly (n) within multiplicative error 1 + e
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Overview of our junta approximations

20(& /)
a-self-bounding 20(1/€)
self-bounding

O(1/€2)
submodular

O(1/€2)
monotone
submodular

X

subadditive
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No junta approximation for subadditive functions

Example: any function f: {0,1}" — {%, 1} is subadditive.

N[ =
—_

n|—=

1 VYA, B; f(AUB) < 1 < f(A) + f(B)

N =

=
[y

Therefore, we can encode any function whatsoever,
e.g. a parity function, which cannot be approximated by a junta.
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Remaining plan of the talk:

@ Friedgut’s theorem for real-valued functions

© = junta approximations for XOS and self-bounding functions
© Improved junta approximation for submodular functions

@ Conclusions
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Friedgut’s Theorem

Friedgut’s Theorem: for boolean functions f: {0,1}" — {0,1}
average sensitivity Infl(f) = e-approx. by a junta of size 20(nfl(1)/<)

Infl(f) = 3274 Precqo132f(x) # f(x @ &))] = Y scqm ISIP(S)

What should it say for real-valued functions?
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Friedgut’s Theorem

Friedgut’s Theorem: for boolean functions f: {0,1}" — {0,1}
average sensitivity Infl(f) = e-approx. by a junta of size 20(nfl(1)/<)

Infl(f) = =74 Prxeqo,1ya[f(X) # f(x @ €)] = X5y |SI73(S)
What should it say for real-valued functions?

Natural extension of average sensitivity:
Infi2(f) = 3 sc(n 1S172(S) = S Exeqo,11a((x) — f(x @ €1))?]

But Friedgut’s Theorem for this notion of average sensitivity is FALSE!
as observed by [O’Donnell-Servedio '07]
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Counterexample to Friedgut’s Theorem?

Counterexample for f : {0,1}" — [—1,1]: (from [O’Donnell-Servedio '07])

1

o
LT
N
\D
NG
S
>

>l Xi

~

° Vx,i;|f(x) — f(x & e)| < 17
o Inf?(f) = 1L, E[(f(x) — f(x @ &)?)] = O(1)

@ so there should be an e-approximate junta of size 20(1/¢)?

@ but we need Q(n) variables to approximate within a constant ¢
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How to fix Friedgut's Theorem?

[O’Donnell-Servedio ’07] prove a variant of Friedgut’s theorem
for discretized functions f : {0,1}" — [—1,1] N dZ.

We don’t know how to discretize while preserving submodularity etc.
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How to fix Friedgut's Theorem?

[O’Donnell-Servedio ’07] prove a variant of Friedgut’s theorem
for discretized functions f : {0,1}" — [—1,1] N dZ.

We don’t know how to discretize while preserving submodularity etc.

14

|
/ ok
—1

Note: If we define Infl"(f) = "7, E[|f(x) — f(x @ €;)|"], then
Infl'(f) = n- ©(1/v/n) = ©(V/n).

Approximations by Juntas
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Friedgut’s Theorem for real-valued functions

Letf:{0,1}" — R. Then there exists a polynomial g of degree
O(Infl(f)/€2) depending on 200n*()/<) poly (Infl' () /¢) variables such
that || — gl» < .
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Friedgut’s Theorem for real-valued functions

Letf:{0,1}" — R. Then there exists a polynomial g of degree
O(Infl(f)/€2) depending on 200n*()/<) poly (Infl' () /¢) variables such
that || — gl» < .

Notes:
@ we could replace Infl'(f) by Infl*(f) for x < 2, but not Infl?(f)
e for boolean functions, Infl'(f) = Infl?(f), so it doesn’t matter

@ we will show that for submodular, XOS and self-bounding
functions, Infl' (f) and Infl(f) are small
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Proof of Real-valued Friedgut

Follow Friedgut’s proof:
Fourier analysis, hypercontractive inequality...

Let
o d = 2Infl(f)/e?
@ a=((rk—1)9/Infl*(f))</(2=%) x = 4/3
e J={ie[n]:InflE(f) > a}
e J={SCJ,|S<d}

Goal: Y_g, , 2(S) < €.
Then, g(x) = >_scs f(S)xs(x) is an e-approximation to f.
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Proof cont'd

The bound on ZSW f2(S) has two parts:

Q > 5.0 (S) < LS ISIP(S) = LInflP(f) < €2/2
— by the definition of d
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Proof cont'd

The bound on ZSW f2(S) has two parts:

Q > 5.0 (S) < LS ISIP(S) = LInflP(f) < €2/2
— by the definition of d

2] ZSZJ\SKd 2(8) < gy Z|S\<d jes 2(S)
< (k=1 IT =013
— this part requires the hypercontractive inequality:
IT /=1 (Oll2 < [If]l

where T, is the noise operator (T,f(S) = pISI(S)).
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Proof cont'd

The bound on ZSW f2(S) has two parts:

Q > 5.0 (S) < LS ISIP(S) = LInflP(f) < €2/2
— by the definition of d

o ZSZJ\SKd ?(8) < Z/¢JZ|S\<dlesf (S)

< (k=1 IT =013
— this part requires the hypercontractive inequality:

IT /=1 (Dll2 < lIfll

where T, is the noise operator (T,f(S) = pISI(S)).

The difference: we need a bound on >, [|9if[% = >4, (Infif ())2/7,
which does not follow from Infl?(f) for real-valued functions.

Finishing the proof: >_ ., ,(Inflf(f))2/* < o?/*=1 37 Infli(f) < (k—1)%?
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Application to self-bounding functions

Recall: f is self-bounding if

zn:(f(x) — miny, f(x)) < f(x).
i=1
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Application to self-bounding functions

Recall: f is self-bounding if
n
> (f(x) = mingf(x)) < f(x).
i=1
By double counting,

Infl'(f) = zn:IE[V(x) —f(xae)|] = Zzn:E[f(x) - rr)l(iln f(x)] < 2E[f(x)].
i=1 i=1 ’

For f: {0,1}" — [0, 1], we get Infl(f) < Infl'(f) = O(1).
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Application to self-bounding functions

Recall: f is self-bounding if
n
> (f(x) = mingf(x)) < f(x).
i=1
By double counting,

Infl™( ZE[V —f(xo )| = 221@[:‘ —min f(x)] < 2E[f(x)].

i=1

For f: {0,1}" — [0, 1], we get Infl(f) < Infl'(f) = O(1).

Corollary (of real-valued Friedgut)

For any self-bounding (or submodular or XOS) function
f:{0,1}" —[0,1] and e > 0, there is a polynomial g of degree
= O(1/€?) over 299 variables such that ||f — g||2 < e.
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Lower bound for XOS functions

Friedgut’s Theorem: it is known that 2°2(1/¢) variables are necessary.
Example: tribes function — lower bound for XOS functions as well.
f(X)—maX LZXLZX LZX
Al S A ST A T [
1 2 b

@ b= 2'/<disjoint blocks A; of size |Aj| = 1/¢
@ any junta smaller than 2'/¢=1 misses 2'/<~ blocks
@ and cannot approximate f within e
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Better juntas for submodular functions

For every submodular function f : {0,1}" — [0,1] and e > 0, there is a
function g depending on O(; log 1) variables, such that ||f — gl|2 < e.
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Better juntas for submodular functions

For every submodular function f : {0,1}" — [0,1] and e > 0, there is a
function g depending on O(; log 1) variables, such that ||f — gl|2 < e.

Notes:
e this is tight up to the log factor; consider f(x) = €2 Z”ﬁ X;

@ in this sense, submodular functions are close to linear functions,
while XOS/self-bounding functions are "more complicated"
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About the proof

Inductive step: submodular function f of n variables
— a function of O( 1 > log 2) variables, approximating f within 5€

/\/\ ~
2

e the process stops when n; = O(Z log 1)

l\)“‘
o \—‘

@ errors form a geometric series, converging to e
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How to reduce nto |J| = % log ”

€

For simplicity: assume f : {0,1}"” — [0, 1] monotone submodular.
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How to reduce nto |J| = % log ”

For simplicity: assume f : {0,1}"” — [0, 1] monotone submodular.

Idea: build J by including variables x;,, x;,, X;,, . . . that contribute
significantly to the current set:

Exet0,11[0if(X)] = Excpo, 130 [f(x @ €)) — f(X)] > a.

Hopefully:
@ we cannot include too many variables, because the function is
bounded by [0, 1]
@ fis a-Lipschitz in the variables that are not selected, and hence
we can use concentration to argue that they can be ignored

25/29
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How to reduce nto |J| = % log ”

€

For simplicity: assume f : {0,1}"” — [0, 1] monotone submodular.

Idea: build J by including variables x;,, x;,, X;,, . . . that contribute
significantly to the current set:

Exet0,11[0if(X)] = Excpo, 130 [f(x @ €)) — f(X)] > a.

Hopefully:

@ we cannot include too many variables, because the function is
bounded by [0, 1]

@ fis a-Lipschitz in the variables that are not selected, and hence
we can use concentration to argue that they can be ignored

BUT: f is a-Lipschitz in the remaining variables only "in expectation";
we need a statement for most points in {0,1}” and for all j ¢ J
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The Boosting Lemma

Lemma (Goemans,V. 2004)
Let F C {0,1}" be down-closed (x <y € F = x € F) and

o(p) = PrxeF]=3_ p"l(1—p)" .
P Fer

Then o(p) = (1 — p)?(P) where ¢(p) is a non-decreasing function of p.
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The Boosting Lemma

Lemma (Goemans,V. 2004)
Let F C {0,1}" be down-closed (x <y € F = x € F) and

a(p) = PrxeFl="Y pFl(1—p)"IFl

X~
He Fer

Then o(p) = (1 — p)?(P) where ¢(p) is a non-decreasing function of p.

Example:

e /2
H1/k

o)z F—o(z(-PF=1
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How we find the small junta

Algorithm: (for f monotone submodular)
o Initialize J := 0, a ~ €2, 5 ~ 1/log Z.
@ Let J(J) = each element of J independently with prob. 4.
@ Aslong as Ji ¢ J such that

Pr[6,f(1J(5)) > Oé] > 1/6,

include i in J.
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How we find the small junta

Algorithm: (for f monotone submodular)
o Initialize J := 0, a ~ €2, 5 ~ 1/log Z.
@ Let J(J) = each element of J independently with prob. 4.
@ Aslong as Ji ¢ J such that
Pr[6,-f(1J(5)) > a] > 1/6,

include i in J.

Using the boosting lemma:
If we did not include / in the final set J, then Pry_ 5 [0if(x) > o] < 1/e,
and hence Pry. 1 /2)[0if(x) > o] < (1/2)'/% ~ ¢/n.
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How we find the small junta

Algorithm: (for f monotone submodular)
o Initialize J := 0, a ~ €2, 5 ~ 1/log Z.
@ Let J(J) = each element of J independently with prob. 4.
@ Aslong as Ji ¢ J such that

PI’[@,’f(‘IJ((;)) > a] > 1/6,
include i in J.

Using the boosting lemma:
If we did not include / in the final set J, then Pry_ 5 [0if(x) > o] < 1/e,

and hence Pry. 1 /2)[0if(x) > o] < (1/2)'/% ~ ¢/n.
Union bound = Pry_y1/2)[37 ¢ J; 0if(x) > a] < e.
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Finishing the proof

Accuracy of the junta:

@ We found a set J such that with probability 1 — ¢ over x € {0,1}",
the function gx(y) = f(x, y) is €>-Lipschitz in y

@ By concentration, gy is e-approximated by its expectation.
@ Hence, f is 2e-approximated by its averaging-projection on {0, 1}7.
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Finishing the proof

Accuracy of the junta:

@ We found a set J such that with probability 1 — ¢ over x € {0,1}",
the function gx(y) = f(x, y) is €>-Lipschitz in y

@ By concentration, gy is e-approximated by its expectation.
@ Hence, f is 2e-approximated by its averaging-projection on {0, 1}7.

Size of the junta:
@ every time we include / € J, we have E. 5 [0if(x)] > a/e
@ so we increase E[f(J(5))] by ad/e
e this can repeat at most O(};) = O(; log ?) times.
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Concluding comments and questions

@ Self-bounding functions are e-approximated by 2°(1/¢*)-juntas
@ Submodular functions are e-approximated by O(1/¢2)-juntas

@ We also have a (1 + ¢€)-multiplicative approximation except for
e-fraction of {0, 1}", for monotone submodular functions, by a
junta of size O(1/¢€?).

@ We don’t know if such a junta exists for non-monotone
submodular functions

More on our learning algorithms and results: Vitaly Feldman on Oct 30.
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