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Introduction
One of the fundamental issues of probability theory is the study of
suprema of stochastic processes. Besides various practical
motivations it is closely related to such theoretical problems as

regularity of sample paths of stochastic processes,
convergence of othogonal and random series,
estimates of norms of random vectors and random matrices,
limit theorems for random vectors and empirical processes,
combinatorial matching theorems.

In particular in many situations one needs to estimate the quantity
E supt∈T Xt , where (Xt)t∈T is a stochastic process.
The modern approach to this problem is based on chaining
techniques, present already in the works of Kolmogorov and
successfully developed over the last 40 years.
To avoid measurability problems one may either assume that T is
countable or define

E sup
t∈T

Xt := sup
F

E sup
t∈F

Xt ,

where the supremum is taken over all finite sets F ⊂ T .



Gaussian Processes

Let (Gt)t∈T be a centered Gaussian process and

g(T ) := E sup
t∈T

Gt .

In this case the boundedness of the process (which by the
concentration properties of Gaussian processes is equivalent to the
condition g(T ) <∞) is related to the geometry of the metric
space (T , d), where d(t, s) := (E(Gt − Gs)2)1/2.

R.Dudley’67 derived an upper bound for g(T ) in terms of entropy
numbers:

g(T ) ≤ L
∫ ∞

0
log1/2 N(T , d , r)dr ,

where L is a universal constant and N(T , d , r) is the minimal
number of balls with radius r that cover T .
Dudley’s bound may be reversed for stationary processes, but not
in general.



Majorizing Measure Theorem
Two-sided bound for g(T ) was found by X.Fernique’74 (upper
bound) and M.Talagrand’87 (lower bound) in terms of majorizing
measures. Let

γ2(T ) := inf sup
t∈T

∫ ∞
0

log1/2
( 1
µ(B(t, x))

)
dx ,

where the infimum is taken over all probability measures on T and
B(t, ε) denotes the closed ball in (T , d) with radius x , centered at
t.

Theorem (Fernique-Talagrand)
There exists a universal constant L <∞ such that for all centered
Gaussian processes,

1
Lγ2(T ) ≤ g(T ) ≤ Lγ2(T ).

In particular g(T ) <∞ if and only if γ2(T ) <∞.



Majorizing measures without measures

In general finding a majorizing measure in a concrete situation is a
highly nontrivial task. Talagrand proposed a more combinatorial
approach to this problem.
An increasing sequence (An)n≥0 of partitions of the set T is called
admissible if A0 = {T} and |An| ≤ Nn := 22n . Talagrand showed
that the quantity γ2(T ) is equivalent to

inf sup
t∈T

∞∑
n=0

2n/2∆(An(t)),

where the infimum runs over all admissible sequences of partitions.
Here An(t) is the unique set in An which contains t and ∆(A)
denotes the diameter of the set A.

So to bound a supremum of some Gaussian process one may either
construct a measure or build a partition.



Bernoulli Processes
Any separable Gaussian process has a canonical Karhunen-Loève
type representation (

∑
i≥1 tigi )t∈T , where g1, g2, . . . are i.i.d.

standard normal Gaussian N (0, 1) r.v’s and T is a subset of `2.
Another fundamental class of processes is obtained when in such a
sum one replaces the Gaussian r.v’s (gi ) by independent random
signs.
Let (εi )i≥1 be a Bernoulli sequence, i.e. a sequence of i.i.d.
symmetric r.v.’s taking values ±1. For any t ∈ `2 the series∑

i≥1 tiεi converges a.s. and we may define a Bernoulli process(∑
i≥1

tiεi
)

t∈T
, T ⊂ `2.

It is natural to ask when the Bernoulli process is a.s. bounded or,
equivalently, when

b(T ) := E sup
t∈T

∑
i≥1

tiεi <∞?



Two easy upper bounds

The first bound follows by the uniform bound
|
∑

i tiεi | ≤
∑

i |ti | = ‖t‖1, so that

b(T ) ≤ sup
t∈T
‖t‖1.

Another bound is based on the domination by the canonical
Gaussian process Gt :=

∑
i tigi . Assuming independence of (gi )

and (εi ), Jensen’s inequality implies

g(T ) = E sup
t∈T

∑
i
tigi = E sup

t∈T

∑
i
tiεi |gi |

≥ E sup
t∈T

∑
i
tiεiE|gi | =

√
2
π
b(T ).



Bernoulli Conjecture

Obviously also if T ⊂ T1 + T2 = {t1 + t2 : t l ∈ Tl} then
b(T ) ≤ b(T1) + b(T2), hence

b(T ) ≤ inf
{
sup
t∈T1

‖t‖1 +

√
π

2 g(T2) : T ⊂ T1 + T2
}

≤ inf
{
sup
t∈T1

‖t‖1 + Lγ2(T2) : T ⊂ T1 + T2
}
.

It was open for about 25 years (under the name of Bernoulli
conjecture) whether the above estimate may be reversed. Next
theorem provides a positive solution.

Theorem (Bednorz, L.’13+)
For any set T ⊂ `2 with b(T ) <∞ we may find a decomposition
T ⊂ T1 + T2 with supt∈T1

∑
i≥1 |ti | ≤ Lb(T ) and g(T2) ≤ Lb(T ).



Kwapień’s Conjecture

Problem
Let (F , ‖ ‖) be a normed space and (ui ) be a sequence of vectors
in F such that the series

∑
i≥1 uiεi converges a.s. Does there exist

a universal constant L and a decomposition ui = vi + wi such that

sup
ηi=±1

∥∥∥∑
i≥1

viηi
∥∥∥ ≤ LE

∥∥∥∑
i≥1

uiεi
∥∥∥ and E

∥∥∥∑
i≥1

wigi
∥∥∥ ≤ LE

∥∥∥∑
i≥1

uiεi
∥∥∥?

The positive solution of the Bernoulli Conjecture shows that the
answer is positive for F = `∞, in general one may only assume
that F is a subspace of `∞.
The difficulty here is that our proof gives very little additional
information about the decomposition, in particular there is no
reason for sets T1 and T2 to be contained in the linear space
spanned by the index set T .



Another bound for Bernoulli processes
For a random variable X and p > 0 we set ‖X‖p := (E|X |p)1/p.

Corollary
Suppose that (Xt)t∈T is a Bernoulli process with b(T ) <∞. Then
there exist t1, t2, . . . ∈ `2 such that T − T ⊂ conv{tn : n ≥ 1}
and ‖Xtn‖log(n+2) ≤ Lb(T ) for all n ≥ 1.

The converse statement easily follows from the union bound and
Chebyshev’s inequality. Indeed, suppose that
T − T ⊂ conv{tn : n ≥ 1} and ‖Xtn‖log(n+2) ≤ M. Then

P
(

sup
s∈T−T

Xs ≥ uM
)
≤ P

(
sup
n≥1

Xtn ≥ uM
)
≤
∑
n≥1

P(Xtn ≥ u‖Xtn‖log(n+2))

≤
∑
n≥1

u− log(n+2)

and integration by parts easily yields for any t0 ∈ T ,
b(T ) = E sup

t∈T
(Xt − Xt0) = E sup

t∈T
(Xt−t0) ≤ E sup

s∈T−T
Xs ≤ LM.



Proof of the Gaussian case

Proof of the lower bound for g(T ) is based on two facts - Gaussian
concentration and Sudakov minoration.

Theorem (Gaussian concentration)
Let (Gt)t∈T be a centered Gaussian process, then for any u > 0,

P
(∣∣∣ sup

t∈T
Gt − g(T )

∣∣∣ ≥ u) ≤ 2 exp
(
− u2

2σ2

)
,

where σ2 := supt∈T E|Gt |2.

Theorem (Sudakov minoration)
Suppose that t1, . . . , tm are such that ‖Gtl − Gtl′‖2 ≥ a for all
l 6= l ′. Then

E sup
l≤m

Gtl ≥
1
La
√
logm.



Concentration and minoration for Bernoulli processes

Theorem (Talagrand’88)
Let T ⊂ `2 be such that b(T ) <∞, then for any u > 0,

P
(∣∣∣ sup

t∈T

∑
i≥1

tiεi − b(T )
∣∣∣ ≥ u) ≤ L exp

(
− u2

Lσ2

)
,

where σ2 := supt∈T ‖t‖22.

Theorem (Talagrand’93)
Suppose that vectors t1, . . . , tm ∈ `2(I) and numbers a, b > 0
satisfy

∀l 6=l ′ ‖tl − tl ′‖2 ≥ a and ∀l ‖tl‖∞ ≤ b.

Then
E sup

l≤m

∑
i∈I

tl ,iεi ≥
1
L min

{
a
√
logm, a

2

b
}
.



About the proof of BC

It is however not an easy task to combine in a right way
concentration and minoration properties of Bernoulli processes.
Our proof builds on many ideas developed over the years by Michel
Talagrand.

One of difficulties lies in the fact that there is no direct way of
producing a decomposition t = t1 + t2 for t ∈ T such that
supt∈T ‖t1‖1 ≤ Lb(T ) and γ2({t2 : t ∈ T}) ≤ Lb(T ). Following
Talagrand we connect decompositions of the set T with suitable
sequences of its admissible partitions (An)n≥0.

To each set A ∈ An we will assign an integer jn(A) and a point
πn(A) ∈ T . The main novelty in the next statement is the
introduction of sets In(A).



Partitions and Bernoulli decomposition

Theorem
Suppose that (An)n≥0 is an admissible sequence of partitions s.t.
i) ‖t − s‖2 ≤

√
Mr−j0(T ) for t, s ∈ T,

ii) if n ≥ 1, An 3 A ⊂ A′ ∈ An−1 then either
a) jn(A) = jn−1(A′) and πn(A) = πn−1(A′) or
b) jn(A) > jn−1(A′), πn(A) ∈ A′ and∑

i∈In(A)

min{(ti − πn(A)i )
2, r−2jn(A)} ≤ M2nr−2jn(A) for all t ∈ A,

where for any t ∈ A,

In(A) = In(t) :=
{
i : |πk+1(t)i−πk(t)i | ≤ r−jk(t) for 0 ≤ k ≤ n−1

}
.

Then there exist sets T1,T2 such that T ⊂ T1 + T2 and

sup
t1∈T1

‖t1‖1 ≤ LM sup
t∈T

∞∑
n=0

2nr−jn(t), γ2(T2) ≤ L
√
M sup

t∈T

∞∑
n=0

2nr−jn(t).



Partition construction

To build such partition we use another idea of Talagrand and
construct functionals on nonempty subsets of T and related
distances that posess a Talagrand-type decomposition property,
which roughly says that each index set may be decomposed into a
pieces that either have small diameter (with respect to a suitable
distance) or a small value of a suitable functional on subsets of
small diameter.

Our functionals and distances depend not only on two
integer-valued parameters, but also on the subset. Their
construction combines Talagrand’s “chopping maps” that “add
new Bernoulli r.v’s to the process" and other types of maps that
“remove Bernoulli r.v’s from the process".



Key proposition

The key ingredient to show the decomposition property is the
following proposition, which is based on concentration and
minorization properties of Bernoulli processes.

Proposition
Let J ⊂ N∗, an integer m ≥ 2, σ > 0 and T ⊂ `2 be such that(∑

i∈J
(ti−si )

2
)1/2

≤ 1
Lσ and ‖t−s‖∞ ≤

σ√
logm

for all t, s ∈ T .

Then there exist t1, . . . , tm ∈ T such that either
T ⊂

⋃
l≤m B(t l , σ) or the set S := T \

⋃
l≤m B(t l , σ) satisfies

bJ(S) := E sup
t∈S

∑
i∈J

tiεi ≤ b(T )− 1
Lσ
√
logm.

The crucial point here is that we make no assumption about the
diameter of the set T with respect to the `2 distance.



Fernique’s question

The Bernoulli Conjecture was motivated by the following question
of X. Fernique concerning random Fourier series. Let G be a
compact Abelian group and (F , ‖ ‖) be a complex Banach space.
Consider (finitely many) vectors vi ∈ F and characters χi on G . X.
Fernique showed that

E sup
h∈G

∥∥∥∑
i
vigiχi (h)

∥∥∥
≤ L

(
E
∥∥∥∑

i
vigi

∥∥∥+ sup
‖x∗‖≤1

E sup
h∈G

∣∣∣∑
i
x∗(vi )giχi (h)

∣∣∣)
and asked whether similar bound holds if one replaces Gaussian
r.v’s by random signs.



Fernique’s question
An affirmative answer to Fernique’s question follows from the
Bernoulli Conjecture.
Theorem
For any compact Abelian group G any finite collection of vectors vi
in a complex Banach space (F , ‖ ‖) and characters χi on G we
have

E sup
h∈G

∥∥∥∑
i
viεiχi (h)

∥∥∥
≤ L

(
E
∥∥∥∑

i
viεi

∥∥∥+ sup
‖x∗‖≤1

E sup
h∈G

∣∣∣∑
i
x∗(vi )εiχi (h)

∣∣∣).
Remark. Since χi (e) = 1 we have

max
{

E
∥∥∥∑

i
viεi

∥∥∥, sup
‖x∗‖≤1

E sup
h∈G

∣∣∣∑
i
x∗(vi )εiχi (h)

∣∣∣}
≤ E sup

h∈G

∥∥∥∑
i
viεiχi (h)

∥∥∥.



Sketch of the proof
We need to show that for any bounded set T ⊂ Cn, n <∞,

E sup
h∈G,t∈T

∣∣∣ n∑
i=1

tiεiχi (h)
∣∣∣ ≤ L

(
E sup

t∈T

∣∣∣ n∑
i=1

tiεi
∣∣∣+sup

t∈T
E sup

h∈G

∣∣∣ n∑
i=1

tiεiχi (h)
∣∣∣).

(1)
Let M := E supt∈T |

∑n
i=1 tiεi |. BC implies that we can find a

decomposition T ⊂ T1 + T2, with supt1∈T1 ‖t
1‖1 ≤ LM and

E sup
t2∈T2

∣∣∣ n∑
i=1

t2
i gi
∣∣∣ ≤ LM. (2)

We may also assume that T2 ⊂ T − T1.
Obviously

E sup
h∈G,t∈T

∣∣∣ n∑
i=1

tiεiχi (h)
∣∣∣

≤ E sup
h∈G,t1∈T1

∣∣∣ n∑
i=1

t1
i εiχi (h)

∣∣∣+ E sup
h∈G,t2∈T2

∣∣∣ n∑
i=1

t2
i εiχi (h)

∣∣∣.
(3)



Skecth of the proof ctd
Since |

∑n
i=1 t1

i εiχi (h)| ≤
∑n

i=1 |t1
i ||χi (h)| = ‖t1‖1 we get

E sup
h∈G,t1∈T1

∣∣∣ n∑
i=1

t1
i εiχi (h)

∣∣∣ ≤ sup
t∈T 1
‖t1‖1 ≤ LM. (4)

Jensen’ inequality and Fernique’s theorem imply

E sup
h∈G,t2∈T2

∣∣∣ n∑
i=1

t2
i εiχi (h)

∣∣∣ ≤ √π

2E sup
h∈G,t2∈T2

∣∣∣ n∑
i=1

t2
i giχi (h)

∣∣∣
≤ L

(
E sup

t2∈T2

∣∣∣ n∑
i=1

t2
i gi
∣∣∣+ sup

t2∈T2

E sup
h∈G

∣∣∣ n∑
i=1

t2
i giχi (h)

∣∣∣).
(5)

The Marcus-Pisier estimate yields for any t2 ∈ T2,

E sup
h∈G

∣∣∣ n∑
i=1

t2
i giχi (h)

∣∣∣ ≤ LE sup
h∈G

∣∣∣ n∑
i=1

t2
i εiχi (h)

∣∣∣. (6)

It is not hard to deduce estimate (1) from (2)-(6).



Lévy-Ottaviani maximal inequalities
The Lévy inequality states that for any a.s. convergent series∑∞

i=1 Xi of independent symmetric r.v’s with values in some
Banach space and u > 0 we have

P
(
max

n

∥∥∥ n∑
i=1

Xi
∥∥∥ ≥ u

)
≤ 2P

(∥∥∥ ∞∑
i=1

Xi
∥∥∥ ≥ u

)
.

The generalization of the Lévy inequality to a nonsymmetric case is
called the Lévy-Ottaviani inequality. It states that for any a.s.
convergent series

∑∞
i=1 Xi of independent Banach-space valued

r.v’s and u > 0,

P
(
max

n

∥∥∥ n∑
i=1

Xi
∥∥∥ ≥ u

)
≤ 3max

n
P
(∥∥∥ n∑

i=1
Xi
∥∥∥ ≥ u/3

)
.

Both Lévy and Lévy-Ottaviani inequalities have numerous
applications. Roughly speaking they enable to reduce an almost
sure statement to a statement in probability (like for example in
the Itô-Nisio theorem).



General maximal inequalities

However sometimes one has to consider more complicated sets of
indices and ways of converging of sums of random variables. This
motivates the following definition.

Definition
Let C be a class of subsets of I and F be a separable Banach space.
We say that C satisfies the maximal inequality in F if there exist a
constant K <∞ such that for any sequence (Xi ) of independent
r.v.’s with values in F satisfying #{i : Xi 6= 0} <∞ a.s. we have

∀u>0 P
(
max
C∈C

∥∥∥∑
i∈C

Xi
∥∥∥ ≥ u) ≤ K max

C∈C∪{I}
P
(∥∥∥∑

i∈C
Xi
∥∥∥ ≥ u/K

)
.

If this is true for any separable Banach space F we say that C
satisfies the maximal inequality.

Question. Which classes C satisfy the maximal inequality?



Maximal inequalities and VC classes

Recall that a class C of subsets of I is called a Vapnik-Chervonenkis
class (or in short a VC-class) of order at most d if for any set
A ⊂ I of cardinality d + 1 we have |{C ∩ A : C ∈ C}| < 2d+1.

It is easy to see (taking F = R, Xi = εiv for i ∈ I0 and Xi = 0
otherwise, where I0 is a finite subset of I and v is any nonzero
vector in F ) that class C that satisfies maximal inequality (even in
the scalar case) needs to be a VC-class.

The converse statement follows from the Bernoulli Conjecture.



Maximal inequalities for VC classes

Theorem
Let (Xi )i∈I be independent random variables in a separable Banach
space (F , ‖ ‖) such that |{i : Xi 6= 0}| <∞ a.s. and C be a
countable VC-class of subsets of I of order d. Then for u > 0,

P
(
sup
C∈C

∥∥∥∑
i∈C

Xi
∥∥∥ ≥ u

)
≤ K (d) sup

C∈C∪{I}
P
(∥∥∥∑

i∈C
Xi
∥∥∥ ≥ u

K (d)

)
,

where K (d) is a constant that depends only on d. Moreover if the
variables Xi are symmetric then

P
(
sup
C∈C

∥∥∥∑
i∈C

Xi
∥∥∥ ≥ u

)
≤ K (d)P

(∥∥∥∑
i∈I

Xi
∥∥∥ ≥ u

K (d)

)
for u > 0.



Empirical processes
Solving the Bernoulli Conjecture is just the first step towards a
much more ambitious program of finding two-sided bounds for the
suprema of empirical processes.
Let (Xi )i≤N be i.i.d. r.v’s with values in a measurable space (S,S)
and F be a class of measurable functions on S. It is a fundamental
problem to relate the quantity

SN(F) := E sup
f ∈F

1√
N

∣∣∣∑
i≤N

(f (Xi )− Ef (Xi ))
∣∣∣

with the geometry of the class F .
Let (X ′i ) be an independent copy of (Xi ) then Jensen’s inequality
and a pointwise estimate imply

SN(F) ≤ E sup
f ∈F

1√
N

∣∣∣∑
i≤N

(f (Xi )− f (X ′i ))
∣∣∣ ≤ 2E sup

f ∈F

1√
N

∣∣∣∑
i≤N

f (Xi )
∣∣∣

≤ 2E sup
f ∈F

1√
N
∑
i≤N
|f (Xi )|



Chaining bound
The second bound for SN(F) is based on chaining and Bernstein’s
inequality

P
(∣∣∣∑

i≤N
(f (Xi )−Ef (Xi ))

∣∣∣ ≥ t
)
≤ 2 exp

(
−min

{ t2

4N‖f ‖22
,

t
4‖f ‖∞

})
,

where ‖f ‖p denotes the Lp norm of f (Xi ). Chaining argument
shows that

SN(F) ≤ L
(
γ2(F2, d2) +

1√
N
γ1(F2, d∞)

)
,

where dp(f , g) := ‖f − g‖p. Here we define for α > 0 and a
metric space (T , d),

γα(T , d) := inf sup
t∈T

∞∑
n=0

2n/α∆(An(t)),

where as in the definition of γ2 the infimum runs over all
admissible sequences of partitions (An)n≥0 of the set T .



Conjecture for suprema of empirical processes

The following conjecture asserts that there are no other ways to
bound suprema of empirical processes.

Conjecture (Talagrand)
Suppose that F is a countable class of measurable functions. Then
one can find a decomposition F ⊂ F1 + F2 such that

E sup
f1∈F1

∑
i≤N
|f1(Xi )| ≤

√
NSN(F),

γ2(F2, d2) ≤ LSN(F) and γ1(F2, d∞) ≤ L
√
NSN(F).

In other words “chaining explains the part of boundedness due to
cancellation”.



Selector processes
Since any mean zero random variable is a mixture of mean zero
two-points random variables empirical processes are strictly related
to ”selector processes” of the form

Xt =
∑
i≥1

ti (δi − δ), t ∈ `2,

where (δi )i≥1 are independent random variables such that
P(δi = 1) = δ = 1− P(δi = 0).
As for empirical processes we may bound the quantity

δ(T ) := E sup
t∈T

∣∣∣∑
i≥1

ti (δi − δ)
∣∣∣, T ⊂ `2

in two ways.
First bound for δ(T ) follows by a pointwise estimate ((δ′i )i denotes
an independent copy of (δi )i)

δ(T ) ≤ E sup
t∈T

∣∣∣∑
i≥1

ti (δi−δ′i )
∣∣∣ ≤ 2E sup

t∈T

∣∣∣∑
i≥1

tiδi
∣∣∣ ≤ 2E sup

t∈T

∑
i≥1
|ti |δi .



Selector processes - chaining bound

Bernstein’s inequality implies that for Xt =
∑

i≥1 ti (δi − δ) and
δ ∈ (0, 1/2] we have for s, t ∈ `2,

P(|Xt − Xs | ≥ u) ≤ 2 exp
(
−min

{ u2

Lδd2(s, t)2 ,
u

Ld∞(s, t)

})
,

where dp(t, s) := ‖t − s‖p denotes the `p-distance. This together
with a chaining argument yields

δ(T ) ≤ L(
√
δγ2(T , d2) + γ1(T , d∞)).



Conjecture for suprema of selector processes

The next conjecture states that there are no other ways to bound
δ(T ) as the combination of the above two estimates and the fact
that δ(T1 + T2) ≤ δ(T1) + δ(T2).

Conjecture (Talagrand)

Let 0 < δ ≤ 1/2, δi be independent random variables such that
P(δi = 1) = δ = 1− P(δi = 0) and
δ(T ) := E supt∈T |

∑
i≥1 ti (δi − δ)| for T ⊂ `2. Then for any set T

with δ(T ) <∞ one may find a decomposition T ⊂ T1 + T2 such
that

E sup
t∈T1

∑
i≥1
|ti |δi ≤ Lδ(T ),

√
δγ2(T2, d2) ≤ Lδ(T ) and γ1(T2, d∞) ≤ Lδ(T ).

It may be showed that for δ = 1/2 the above conjecture follows
from the Bernoulli Conjecture.



Thank you for your attention!


