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The Small Set Expansion Problem

vollS) = /~V§I//|

# edges leaving S

d-regular graph G 7 S expansion(S) = —
Expansion Profile: ¢ /&¢:(0.1/2 [-[0,1] ‘1

N \A OIG (O)=min—BSCV, vol(S)<0 expansion()
1vertexin $
vertex set < rpansion()

Small Set Expansion Problem:
Given graph & and a constant J€ (0,1/2 ], approximate ®L6 (J)

SSE(0,€)
Given a graph & decide if,

« DI (0)<e G has a non-expanding small set
OR

« DIG(0)>1/10 Gis a  Jd-small set expander”



Expansion Profile: ¢ /6:(0.1/2 /-[0,1]

The Small Set Expansion 4 ; c5)=min-—WSc v, vol(S)<8 expansion(s)

Small Set Expansion Problem:
Given graph & and a constant 6€ (0,1/2 ], approximate ® L6 (J)

-

Approximation Algorithms for ®J6& (1/2):

Cheeger’s Inequality [Alon][Alon-Milman]
Given a graph G, if the normalized adjacency matrix has second eigen value A, then,

(1T—7.)
SSE(S€) (STILL OPEN) €
Given a graph & decide if,
« DG (0)<e G has a non-expanding small set
OR
e ®JG(0)>1/10 Gis a " d-small set expander” N

Any improvement over “®JG (§)<e  OR ®IG (5)>Veogl/S " would solve SSE(J,€)
[R-Steurer-Tulsiani 2012]




Connection to Unique Games Conjecture

BAsiC SDp is optimal for ...

Constraint Satisfaction Problems [R'08]
Max CuT [KKMO™06], MaAx 2SAT [Au 07]

Metric Labeling Problems [MNRS 08]
MuULTIWAY CUT, O-EXTENSION
Orderlng CSPs [GMR'08]
UGC MaAX AcYcCLIC SUBGRAPH, BETWEENESS

Strict Monotone CSPs [KMTV 10]

7
\ VERTEX COVER, HYPERGRAPH VERTEX COVER
Kernel Clustering Problems [KN'08,10]

0\ Grothendieck Problems [KNS 08, RS'09]

SSE

\

SSE problem is a bottleneck for existing

Unifor : . :
algorithmic techniques for all these problems

Minimum |



Notation

Let 4 be the normalized adjacency matrix of the d-regular graph ¢,
(all entries are 0 071 /d )
LIG=/—A4 isthe Laplacian.

LG has neigenvalues 441 =0<A4J2 <AI3 <..<AIN <2

and corresponding eigenvectors ell, .., eln

“top eigen-vectors”~ eigenvectors with small eigenvalues.

Def (Small Set Expander):
A regular graph G is a 6-small set expander
if for every set Sc/,
[S|SON =L  expansion(5)=1/2




Non-expanding sets and spectrum

Given: regular graph ¢ with vertex set V, parameter >0

Suppose f/=1.5 indicator function of a small non-expanding set.

S has J-fraction of vertices = [[f]|12 I2 = E[fT2 |=& e

=
S5

Fraction of edges leaving 5= EJrandom edge (x,y) ((x)—f(y))12

=(/,L4C 1)
If expansion(5)<0.001 then
So,
(FLLG F)<0.001/f]42 12 4
(f is close to the span of eigenvectors of G with eigenvalue <0.01)
Conclusion:

Indicator function of a small non-expanding set f = 1.5 is a
e sparse vector
e close to the span of the top eigenvectors of G



Subspace Search Algorithm

* Let

Vitop = Span{eli| A4i<107-6}
* Pick an &net for unit ballin V{top

* For each V& €-net

test if SYv ={l'/\/§72 V\[l'Zl/Z } is non-

expanding.
Running Time = o(nto(dim(Vitop)) )

Small Set Expansion is easy on graphs with dim(/dzop) is small.



Overview

* Higher Order Cheeger Inequalities

* Small Set Expanders with many large eigenvalues.



Higher Order Cheeger
Inequalities



Fix a graph ¢=V,£)
let
A1 =0< A2 <AI3 <. Ak <..<An
are eigenvalues of the normalized Laplacian of G.
Cheeger’s Inequality (Easy Direction)

for every subset scv,/S/</V]/2,
expansion (S)=>442 /2

Higher Order Cheeger (Easy Direction)

For every #disjoint subsets $/1,502,.. Sk,  [SLi|<|V]/2
max—-i expansion(SJi )=>Alk /2

Rest of the Graph




Cheeger’s Inequality (Difficult Direction)

There exists a subset scv,/S/</V]/2,
expansion (S)<v2.142

Higher Order Cheeger (Difficult Direction)
There exists Q(4) disjoint subsets $Y1,502,...5YQ0(%),  [SLi|</V]/2
max—i expansion(Sdi )<OWVAlklogk )
[Lee-Oveis Gharan-Trevisan] [Louis-R-Tetali-Vempala]

Exactly 4 sets with max— expansion(Sii )<k12 VAlk
[Lee-Oveis Gharan-Trevisan]

kTth eigenvalue
Laplacian 4Jk<e

expansion(Sii )<0(Velogk




Fix a graph ¢=V,£)
let
A1 =0< A2 A3 <. Ak <..<Ain
are eigenvalues of the normalized Laplacian of G.

Cheeger’s Inequality (Difficult Direction)

There exists a subset scV,/S/</V//2,
expansion (S)< V2442

Can Efficiently
find the sets

Higher Order Cheeger (Difficult Direction)
There exists Q(4) disjoint subsets SU1,502,..58Q(k),  [SLi[<]V]/2

max—- expansion(Sdi )<SO(VAklogk )

OPEN: Exactly sets?

loss necessary.
Ex: noisy hypercube.




Connection to Small-Set Expansion

Higher Order Cheeger (Difficult Direction)

There exists QO (4) disjoint subsets $Y1,542,...5/0(%), [SYE IS V] /2
max—i expansion(Sdi )<O(VAklogk )

If there are £eigenvalues <g¢, then one can efficiently find a set S'such

that
vol(S)<1/k  and expansion(S)< O(Veogk )

* SSE(g0) is easy for 0= 2T—1 /¢
* Anyimprovement over "®JG (0)<€ OR @G (8)>Veogl/s " would solve

SSE(J,¢€)
[R-Steurer-Tulsiani 2012]




Cheeger’s Inequality (Difficult Direction)
There exists a subset scV,[S/</V]/2,
expansion (S)<v2.142

Second eigenvector of the Zaplacian(G)

X=d1 12 ,...xin )ERTn

Algorithm
* Scan the embedding from left to right

* Qutput the level set $¥7 that minimizes
expansion.
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Higher Order Cheeger (Difficult Direction)
There exists Q(4) disjoint subsets $¢1,542,
o SYQ(K) [SLEISIV]/2

max—- expansion(Sdi )<O(VAklogk )

k- eigenvectors of the Zaplacian(()
X1 =111 112 213 14 ....xiln
X2 =xJ21 xI22 xI23 x24 ... xl2n

Xk =xlkl xli2 x\l/é.xlkl} ...... xlkn

X1l
Xli1Lxlj for =/

XUTT LY fXLiTT XD <Ak



Our Result (Difficult Direction)
There exists Q(4) disjoint subsets $¢1,542,

o SUQ(K) ! E/V//Z
max—-i ex] { i )<O(VAlklo

k- eigenve 5 e Laplacian((

X1 =211 xI1Z2 113 xdl14 ... I
X2 =xd21 222 xl23 xi24 ..... xl2n

Xke=xikl xli2 xIi3 xlih ... xlin
Xiil11
Xli1Lxlj for =/

XUTT LY fXLiTT XD <Ak

+— Ouippaq
ERINNENIIEINE] O

Viie
RTk

RTk



Algorithm

e Pick #random Gaussian vectors
gl ,gl2,...qlk ERTKk

* For each vertex
1. Project Vi/ along Gaussian
directions gi1,9!2,... glk

2. lLet j=argmaxip (Vii,glp)
3. Move (Project Down) the vector

Vii to direction g/ .

* Run Cheeger rounding along each
direction gi7, output the cuts of
expansion <O(VAlkloghk )




Algorithm

e Pick #random Gaussian vectors
gl ,gl2,...qlk ERTKk

* For each vertex
1. Project Vi/ along Gaussian

directions gi1,9!2,... glk

2. lLet j=argmaxip (Vii,glp)

3. Move (Project Down) the vector
Vii to direction g/ .

J
Observation: ‘1g

* Run Cheeger rounding along each
direction gi7, output the cuts of
expansion <O(VAlkloghk )

Sets produced are disjoint



Algorithm Again

Project along k
random directions.

RTk

RTk

Need to Prove:

For at least a constant fraction of rows of A
The Rayleigh coefficient <O(Alklogk)

For each Wi/
Zero out all but the
largest coordinate.

Run Cheeger style
rounding on each row.

RTk




Need to Prove:

Algorlthm Analy51s For at least a constant fraction of rows of A
The Rayleigh coefficient <O(Alklogk )
XTT LX/XTT X = ) (1,))EET# (x.
Project along k
random directions.
€ €
BTk BTk
Fact:

Gaussian projection preserves squared distances in expectation.

¥

Rayleigh coefficient of rows of /#is roughly the Rayleigh coefficient of rows of V/
<Ak



Need to Prove:

Algorithm Analysis

For at least a constant fraction of rows of A
The Rayleigh coefficient <O(Aklogk)

Denominator in Expectation:

€
------ RTk
logh) /k £ Xif
WwiliT2

1 /4 -fraction of the mass survives , but

the topmost survives. ,
For each Wi

Zero out all but the

. . largest coordinate.
Numerator in Expectation: g

[Charikar-Makarychev-Makarychev]
Let YY1 X2 ,. XIk and V{1 ,VI2,. Vik be Gaussian random variables such that

Xli, Viiis 1—ecorrelated
Xli, Xl are uncorrelated,

Pr/argmaxdi Xli+argmaxli Vii ] <O(Veogk )



Need to Prove:

For at least a constant fraction of rows of A Algorlthm Analy51s
The Rayleigh coefficient <O(Aklogk)
Bounding Variance of Denominator
S
Use the fact that the rows (eigenvectors) RTk
are orthogonal!!

—> Average inner product between the
columns is low

For each Wi/
Zero out all but the
largest coordinate.

Lemma: Average squared length of Wi/ =1,

The average correlation between random pairs <
1/k

+ basic Hermite polynomials.

= Bound on the variance. KTk




Small Set Expanders with
Many Large Eigenvalues



SSE(S,€) (STILL OPEN)

Given a graph & decide if,

« DG (0)<e G has a non-expanding small set
OR
d-regular graph G
5 srap « G (0)>1/10 Gis a ~ d-small set expander”

threshold rankle (G)<# of eigenvalues of
graph G that are <¢

Subspace search runs in time »70(
threshold rank!e (¢))

Question:
If &is a J~small set expander,
How many eigenvalues <ecan it have?

[Arora-Barak-Steurer 2010]
For a J—small set expander ¢ thresholdrankle <NTVe |&
A subexponential-time algorithm for SS£(J,¢)




Short Code Graph

[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer]
For all small constant 4,

There exists a graph (the Short Code Graph) that is a /—small set expander
with exp(log7/4 ) eigenvalues >1—¢, Ze,,

threshold rankll—e (G)=exp(logTF V)
for some F depending on &

[BGHMRS 11] exp(log 74 V) <threshold rankle (G)<NTe
[ABS]

* Ledto improved gadget constructions and integrality gaps for
semidefinite programming relaxations.

* An n-point £J272 -metric that requires distortion 2 MQ(v/oglog n) to
embedinto Z_1
[Kane-Mekal]



Overview

Long Code/Noisy Hypercube Graph
* Eigenvectors
* Small Set Expansion

Short Code Graph



The Long Code Graph aka Noisy Hypercube

n dimensional hypercye : {-1,1}"
VA

Noise Graph/Frankl-Rodl graphs: #ie
Vertices: {(~1,1}n
Edges: Connect every pair of points

in hypercube separated by a
Hamming distance of ez

Eigenvectors are functions on
{—1,1}Tn

xand’y differ in ez coordinates.

Dictator cuts: Cuts parallel to the Axis
(given by A(x) = xi7)

The dictator cuts yield » sparse cuts in graph Zle



1K 1j Sparsity of Dictator Cuts

/ /
/ /
/ 4 . )
z_ -V- - \I/ . Connect every pair of vertices
B f in hypercube separated by
o Hamming distance of en
n dimensional hypercube

Fraction of edges cut by first dictator
=Prrrandom edge (x,p) [ (x,y) is cut]

=Pr+random edge (x,p) [xi1 #yI1]
=€

Dictator cuts: 7-eigenvectors with eigenvalues efor graph #le
(Number of vertices N = 277, so #of eigenvalues =log/)



Eigenfunctions for Noisy
Hypercube Graph

Eigenfunctions for the Noisy hypercube graph are multilinear
polynomials of fixed degree.

(Noisy hypercube is a Cayley graph on Z42 T Tn , therefore its eigen functions
are characters of the group )

Eigenfunction Eigenvalue

FI (x)=xd1, FI2 (x)=xi2, .. Fin(x)=xin €

FI12 (x)=xd1 xJ2, FI23 (x)=xI2 xI3, ..Fin—1n (x)=xin—-1 xin
~1—(1—¢)72

Degree d multilinear polynomials ~1—(1—€)1d

Top Eigenspace = Low degree polynomials over the
hypercube.




Hypercontractivity

Definition: (Hypercontractivity)
A subspace SERTN is hypercontractive if for all wes
(w4 <Cllw]li2
Projector 2.S in to the subspace S, also called hypercontractive.

(No-Sparse-Vectors)
Roughly, No sparse vectors in a hypercontractive subspace .§

because,
w is d-sparse “&” [[wlli4 /[lw[li2 >1/6T1/4

Hypercontractivity implies Small-Set Expansion
Pl1—e= projector into span of eigenvectors of & with eigenvalue >1—¢

Pl1—e€ is hypercontractive
9
No sparse vector in span of top eigenvectors of G

9
No small non-expanding set in &. (G is a small set expander)




Hypercontractivity for Noisy Hypercube

Top eigenfunctions of noisy hypercube are low degree polynomials.

(Hypercontractivity of Low Degree Polynomials)
For a degree & multilinear polynomial fon {—1,1}7#,

I/ I34 =91d J|f][42

Il

(Noisy Hypercube is a Small-Set Expander)

For constant ¢ the noisy hypercube is a small-set expander.
Moreover, the noisy hypercube has &/ =2Tn vertices and 7

eigenvalues larger than 1—e.



Short Code Graph

[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer 2009]
For all small constant J,

There exists a graph (the Short Code Graph) that is a /~small set expander
with exp(log7/4 ) eigenvalues >1—¢, Ze,,

threshold rankll—e (G)=exp(logTF V)

for some F depending on &




Short Code Graph

Noise Graph: Ale
Vertices: {—1,1}Tn
Edges: Connect every pair of points in

hypercube separated by a Hamming
distance of en

Has 7 sparse cuts, but /=27xn vertices -- too many vertices!

Idea:

Pick a subset of vertices of the long code graph, and their induced subgraph.
1. The dictator cuts still yield 7-sparse cuts

2. The subgraph is a small-set expander!

If + Choice: Reed Muller Codewords of large constant degree.
1/100



Short Code Graph

Noise Graph: Ale

All boolean functions on

Vertices: T bits

Edges: Connect every pair of points in
hypercube separated by a Hamming
distance of en

Fix n=2Tk ande=27T—-d

Short Code Graph Equivalently, _ .
Connect every pair of polynomials (p,q)

:~ace All degree d polynomials _
Vertices: By —(0.1} in k With p(x)= g(x)+ L1 (2)L42 ().
bits. . . Lid (x)

Edges: Connéct every pair of points

separated by a Hamming distance of e~ where ZJi (x) are linear functions.




Short Code Graph

Short Code Graph Equivalently, . .
Connect every pair of polynomials (p,q)
1

Vertices: All degree d polynomials X

over 742 ={0,1} in k With p(x)= g(x)+ LI1 (x)LI2 (x)...
bits. . . Lid (x)

Edges: Conneéct every pair of points

separated by a Hamming distance of e~ where ZJi (x) are linear functions.

Assuming,
1. The dictator cuts still yield 7-sparse cuts
2. The subgraph is a small-set expander!

Threshold rankle = n while number of vertices N =2T0(nTd )

=2TlogT1/
anvy



1K 1j Sparsity of Dictator Cuts

/ /
/ /
/ 4 . )
2 _V- - \I/ . Connect every pair of vertices
4 f in hypercube separated by
_ Hamming distance of en
n dimensional hypercube

Sparsity of dictator cuts holds for every induced subgraph.

Because,

Each edge is cut by exactly ez dictators, so at least n/2 dictators cut less
than 2efraction of edges.



Preserving Small Set Expansion

Top eigenfunctions of noisy hypercube are low degree polynomials.
+

(Hypercontractivity of Low Degree Polynomials)
For a degree & multilinear polynomial fon {—1,1}77,

/34 <91d J|f][42

Il

(Noisy Hypercube is a Small-Set Expander)
For constant ¢ the noisy hypercube is a small-set expander.



Preserving hypercontractivity

(Hypercontractivity of Low Degree Polynomials)
For a degree & multilinear polynomial fon {—1,1}7#,

I/l[44 <97d [[/][42
For a degree & polynomial f,

By hypercontractivity over hypercube,
EIxe{=1,1}Tn [f(x)T4 |[<OTAd (EIxe{—1,1}Tn [f(x)])T2

We picked a subset Sc{—1,1}77 and so we want,
FIXES [f(x)T4 |]<9TAd (EIxES [f(x)])T2
[is degree d, so /T4 and /T2 are degree < 4d.

If S is a 4d-wise independent set then,

ELxeS [F(x)T4 [=Flxe—1,1}Tn [f(x)T4 | <914d (Elxe{—1,1}Tn [f(x)])T2
= 974d (FLxES [F(x)])T2



Preserving Eigenspaces

Top eigenfunctions of noisy hypercube are low degree polynomials.

We Want:
Only top eigenfunctions on the short code graph are also low
degree polynomials.

Bounding the Eigenvalues
Fix W41 042 .., vik € {0,1}TF ,

Over choice of random affine forms ZJ1 (x),2J2 (x),.. Lid (x) over FI2

Show that /T [[/T#LL) (yii) has biaslessthan O(4/27d)

Connected to local-testability of the dual of the underlying code!

We appeal to local testability result of Reed-Muller codes
[Bhattacharya-Kopparty-Schoenebeck-Sudan-Zuckermann]



Mimicking the hypercube

[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer 2009]

"Majority is Stablest’ theorem also holds for the short code.




Open Questions

Question:
If &is a J~small set expander,
How many eigenvalues <ecan it have?

[BGHMRS 11] exp(log74 N) <threshold rankle (G)<NTe
[ABS]

Efficient Certificate for Vertex Expansion:
Given a graph G, find an algorithm to Harder than small set expansion
distinguish between, [Louis-R-Vempala 13]

a) G has a set with vertex expansion <¢

b) G is avertex expander (expansion >
0.1)

(No restriction on set size)



Thank You



