Graph Spectrum and Small Set Expansion

Prasad Raghavendra

University of California
Berkeley

Based on joint works:

Many sparse cuts via higher eigenvalues.

Anand Louis, Prasad Tetali, Santosh Vempala

Making the long code shorter
Boaz Barak, Parikshit Gopalan, Johan Hastad, Raghu Meka, David Steurer

The Small Set Expansion Problem

$$vol(S) = V$$

d-regular graph G /

 $expansion(S) = \frac{\# edges \ leaving \ S}{}$

Expansion Profile: $\Phi \downarrow G : (0.1/2) \rightarrow [0,1]$

5

 $\Phi \downarrow G(\delta) = \min_{\mathcal{T}} S \subseteq V, vol(S) \leq \delta expansion(S)$

n vertex in Sxpansion(S)

vertex set S

Small Set Expansion Problem:

Given graph G and a constant $\delta \in (0, 1/2]$,

approximate $\Phi \downarrow G(\delta)$

 $SSE(\delta,\epsilon)$

Given a graph G decide if,

• $\Phi \downarrow G(\delta) \leq \epsilon$

G has a non-expanding small set

OR

• $\Phi \downarrow G(\delta) > 1/10$

G is a " δ -small set expander"

The Small Set Expansion

Expansion Profile: $\Phi \downarrow G : (0.1/2) \rightarrow [0,1]$

 $\Phi \downarrow G(\delta) = \min_{\tau} \blacksquare S \subset V, vol(S) \leq \delta \ expansion(S)$

Small Set Expansion Problem:

Given graph G and a constant $\delta \in (0, 1/2]$,

approximate $\Phi \downarrow G(\delta)$

Approximation Algorithms for $\Phi \downarrow G(1/2)$:

Cheeger's Inequality [Alon][Alon-Milman]

Given a graph G, if the normalized adjacency matrix has second eigen value $\boldsymbol{\lambda}_2$ then,

$$(1-\lambda_{-})$$

 $SSE(\delta,\epsilon)$

(STILL OPEN)

Given a graph G decide if,

• $\Phi \downarrow G(\delta) \leq \epsilon$

G has a non-expanding small set

OR

• $\Phi \downarrow G(\delta) > 1/10$

G is a `` δ -small set expander"

Any improvement over `` $\Phi \downarrow G(\delta) \leq \epsilon$ OR $\Phi \downarrow G(\delta) > \sqrt{\epsilon} \log 1/\delta$ " would solve SSE(δ, ϵ) [R-Steurer-Tulsiani 2012]

Connection to Unique Games Conjecture

UGC

BASIC SDP is optimal for ...

Constraint Satisfaction Problems [R`08]

MAX CUT [KKMO`06], MAX 2SAT [Au`07]

Metric Labeling Problems [MNRS`08]
MULTIWAY CUT, 0-EXTENSION

Ordering CSPs [GMR'08]

MAX ACYCLIC SUBGRAPH, BETWEENESS

Strict Monotone CSPs [KMTV`10]

VERTEX COVER, HYPERGRAPH VERTEX COVER

Kernel Clustering Problems [KN'08,10]

Grothendieck Problems [KNS'08, RS'09]

..

Unifor Minimum L

SSE

SSE problem is a bottleneck for existing algorithmic techniques for all these problems

Notation

Let A be the normalized adjacency matrix of the d-regular graph G, (all entries are $0 \ or 1/d$)

 $L \downarrow G = I - A$ is the Laplacian.

 $L \downarrow G$ has n eigenvalues $\lambda \downarrow 1 = 0 \le \lambda \downarrow 2 \le \lambda \downarrow 3 \le ... \le \lambda \downarrow N \le 2$

and corresponding eigenvectors $e \downarrow 1$, ..., $e \downarrow n$

"top eigen-vectors" ~ eigenvectors with small eigenvalues.

Def (Small Set Expander):

A regular graph G is a δ -small set expander if for every set $S \subset V$,

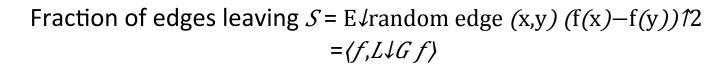
$$|S| \le \delta N$$
 $\Rightarrow \perp expansion(S) \ge 1/2$

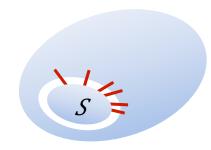
Non-expanding sets and spectrum

Given: regular graph G with vertex set V, parameter $\delta > 0$

Suppose $f=1 \downarrow S$ indicator function of a small non-expanding set.

S has
$$\delta$$
-fraction of vertices $\Rightarrow ||f|| \uparrow 2 \downarrow 2 = E[f \uparrow 2] = \delta$





If $expansion(S) \le 0.001$ then So,

$$(f,L\downarrow Gf) \leq 0.001 ||f|| \downarrow 12 \uparrow 12 \downarrow$$

(f is close to the span of eigenvectors of G with eigenvalue ≤ 0.01)

Conclusion:

Indicator function of a small non-expanding set $f = 1 \downarrow S$ is a

- sparse vector
- close to the span of the top eigenvectors of G

Subspace Search Algorithm

Let

$$V \downarrow top = Span\{e \downarrow i \mid \lambda \downarrow i \leq 10 \uparrow -6 \}$$

- Pick an ϵ -net for unit ball in $V \downarrow top$
- For each $\mathcal{V} \subseteq \mathcal{E}$ -net

test if
$$S \downarrow v = \{i \mid \sqrt{\delta n} \ v \downarrow i \ge 1/2 \}$$
 is non-expanding.

Running Time =
$$O(n \uparrow O(\dim(V \downarrow top)))$$

Small Set Expansion is *easy* on graphs with $dim(V \downarrow top)$ is small.

Overview

Higher Order Cheeger Inequalities

Small Set Expanders with many large eigenvalues.

Higher Order Cheeger Inequalities

Fix a graph G=(V,E) let

$$\lambda \downarrow 1 = 0 \le \lambda \downarrow 2 \le \lambda \downarrow 3 \le ... \lambda \downarrow k \le ... \le \lambda \downarrow n$$

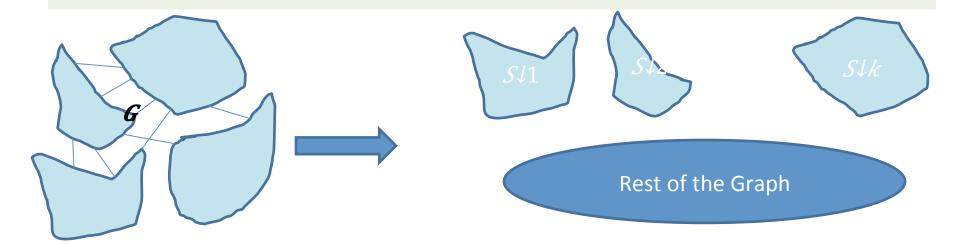
are eigenvalues of the normalized Laplacian of G.

Cheeger's Inequality (Easy Direction)

for every subset $S \subset V$, $|S| \le |V|/2$, expansion $(S) \ge \lambda \sqrt{2}$

Higher Order Cheeger (Easy Direction)

For every k disjoint subsets $S \downarrow 1$, $S \downarrow 2$,..., $S \downarrow k$, $|S \downarrow i| \leq |V|/2$ max $_{\tau}$ i expansion($S \downarrow i$) $\geq \lambda \downarrow k/2$



Cheeger's Inequality (Difficult Direction)

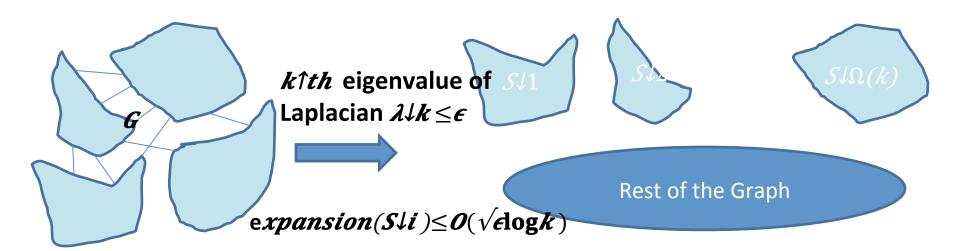
There exists a subset $S \subset V$, $|S| \le |V|/2$, expansion $(S) \le \sqrt{2} \lambda I / 2$

Higher Order Cheeger (Difficult Direction)

There exists $\Omega(k)$ disjoint subsets $S \downarrow 1$, $S \downarrow 2$,..., $S \downarrow \Omega(k)$, $|S \downarrow i| \leq |V|/2$ max $_{-i}$ expansion $(S \downarrow i) \leq O(\sqrt{\lambda} \downarrow k \log k)$

[Lee-Oveis Gharan-Trevisan] [Louis-R-Tetali-Vempala]

Exactly k sets with $\max_{\tau} i \ expansion(S \downarrow i) \le k \uparrow 2 \ \sqrt{\lambda \downarrow k}$ [Lee-Oveis Gharan-Trevisan]



Fix a graph
$$G=(V,E)$$
 let

$$\lambda \downarrow 1 = 0 \le \lambda \downarrow 2 \le \lambda \downarrow 3 \le ... \lambda \downarrow k \le ... \le \lambda \downarrow n$$

are eigenvalues of the normalized Laplacian of G.

Cheeger's Inequality (Difficult Direction)

There exists a subset $S \subset V$, $|S| \le |V|/2$, expansion $(S) \le \sqrt{2} \lambda \sqrt{2}$

Can Efficiently find the sets

Higher Order Cheeger (Difficult Direction)

There exists $\Omega(k)$ disjoint subsets $S \downarrow 1$, $S \downarrow 2$,..., $S \downarrow \Omega(k)$, $|S \downarrow i| \leq |V|/2$ max τ i expansion $(S \downarrow i) \leq O(\sqrt{\lambda} \downarrow k \log k)$

OPEN: Exactly sets?

loss necessary. Ex: noisy hypercube.

Connection to Small-Set Expansion

Higher Order Cheeger (Difficult Direction)

There exists $\Omega(k)$ disjoint subsets $S \downarrow 1$, $S \downarrow 2$,..., $S \downarrow \Omega(k)$, $|S \downarrow i| \leq |V|/2$ max $_i$ expansion $(S \downarrow i) \leq O(\sqrt{\lambda} \downarrow k \log k)$

If there are k eigenvalues $\leq \epsilon$, then one can efficiently find a set S such that

$$vol(S) \le 1/k$$
 and $expansion(S) \le O(\sqrt{\epsilon} \log k)$

- SSE(ϵ , δ) is easy for $\delta \ge 2 \uparrow -1/\epsilon$
- Any improvement over `` $\Phi \downarrow G(\delta) \leq \epsilon$ SSE (δ, ϵ)

OR
$$\Phi \downarrow G(\delta) > \sqrt{\epsilon} \log 1/\delta$$
 " would solve

[R-Steurer-Tulsiani 2012]

Cheeger's Inequality (Difficult Direction)

There exists a subset $S \subset V$, $|S| \le |V|/2$, expansion $(S) \le \sqrt{2} \lambda \sqrt{2}$

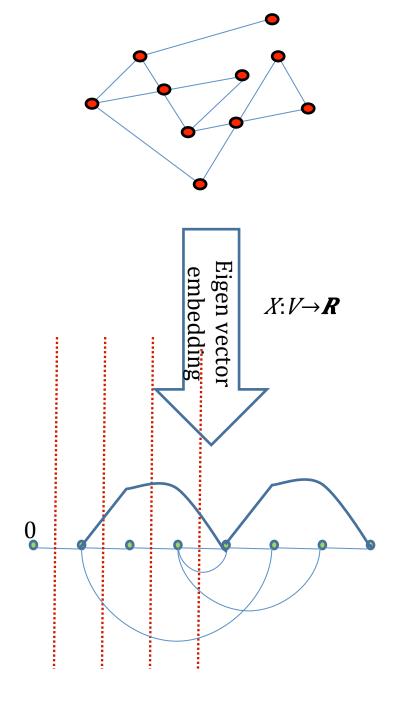
Second eigenvector of the *Laplacian*(*G*)

$$X=(x\downarrow 1, x\downarrow 2, ..., x\downarrow n)\in \mathbf{R}\uparrow n$$

$$\sum (i,j) \in E \uparrow (x \downarrow i - x \downarrow j) \uparrow 2 / \sum i \uparrow (x \downarrow i \uparrow 2) \le \lambda \downarrow 2$$

Algorithm

- Scan the embedding from left to right
- Output the level set $S \downarrow i$ that minimizes expansion.



Higher Order Cheeger (Difficult Direction)

There exists $\Omega(k)$ disjoint subsets $S \downarrow 1$, $S \downarrow 2$, ..., $S \downarrow \Omega(k)$, $|S \downarrow i| \leq |V|/2$ max+ i expansion $(S \downarrow i) \leq O(\sqrt{\lambda} \downarrow k \log k)$

k- eigenvectors of the *Laplacian*(*G*)

$$X \downarrow 1 = x \downarrow 11 \quad x \downarrow 12 \quad x \downarrow 13 \quad x \downarrow 14 \quad \dots \quad x \downarrow 1n$$
$$X \downarrow 2 = x \downarrow 21 \quad x \downarrow 22 \quad x \downarrow 23 \quad x \downarrow 24 \quad \dots \quad x \downarrow 2n$$

....

 $X \downarrow k = x \downarrow k 1$ $x \downarrow k 2$ $x \downarrow k 3$ $x \downarrow k 4$ $x \downarrow k n$

 $X \downarrow i \perp 1$

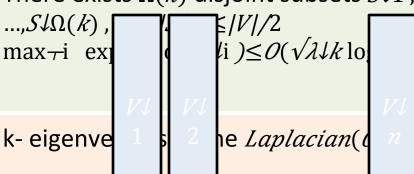
 $X \downarrow i \perp X \downarrow j$ for $i \neq j$

 $X\downarrow i\uparrow T LX\downarrow i / X\downarrow i\uparrow T X\downarrow i \leq \lambda \downarrow k$

Our Result

(Difficult Direction)

There exists $\Omega(k)$ disjoint subsets $S \downarrow 1$, $S \downarrow 2$,



 $X \downarrow 1 = x \downarrow 11 \ x \downarrow 12 \ x \downarrow 13 \ x \downarrow 14 \dots x \downarrow 1n$ $X \downarrow 2 = x \downarrow 21 \ x \downarrow 22 \ x \downarrow 23 \ x \downarrow 24 \dots x \downarrow 2n$

•••

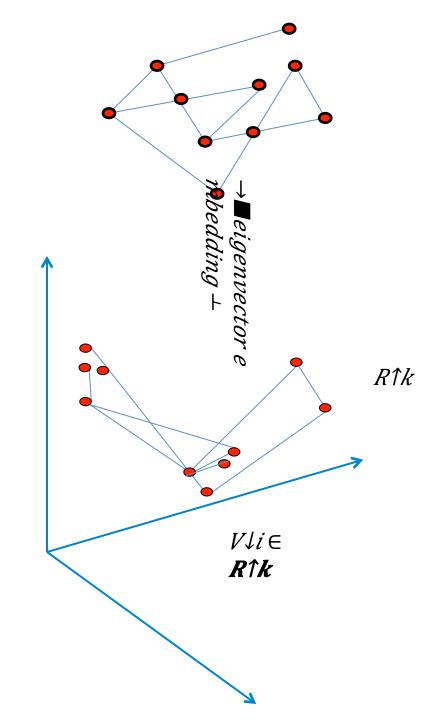
••••

 $X \downarrow k = x \downarrow k 1$ $x \downarrow k 2$ $x \downarrow k 3$ $x \downarrow k 4$ $x \downarrow k n$

 $X \downarrow i \perp 1$

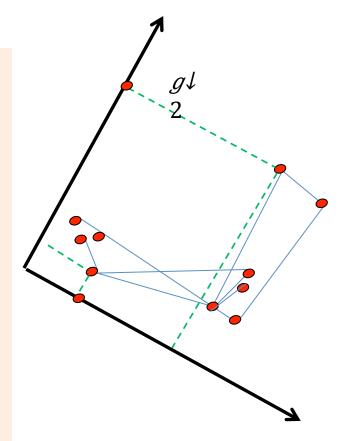
 $X \downarrow i \perp X \downarrow j$ for $i \neq j$

 $X\downarrow i\uparrow T LX\downarrow i / X\downarrow i\uparrow T X\downarrow i \leq \lambda \downarrow k$



Algorithm

- Pick k random Gaussian vectors $g \downarrow 1$, $g \downarrow 2$,..., $g \downarrow k \in \mathbf{R} \uparrow \mathbf{k}$
- For each vertex i,
 - 1. Project $V \downarrow i$ along Gaussian directions $g \downarrow 1$, $g \downarrow 2$,... $g \downarrow k$
 - 2. Let $j=argmax \downarrow p \ (V \downarrow i, g \downarrow p)$
 - 3. Move (Project Down) the vector $V \downarrow i$ to direction $g \downarrow j$.
- Run Cheeger rounding along each direction $g \downarrow i$, output the cuts of expansion $\leq O(\sqrt{\lambda} \downarrow k \log k)$

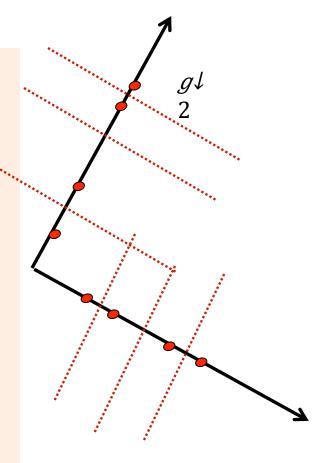


g, 1

Algorithm

- Pick k random Gaussian vectors $g \downarrow 1$, $g \downarrow 2$,..., $g \downarrow k \in \mathbf{R} \uparrow \mathbf{k}$
- For each vertex i,
 - 1. Project $V \downarrow i$ along Gaussian directions $g \downarrow 1$, $g \downarrow 2$,... $g \downarrow k$
 - 2. Let $j=argmax \downarrow p \ (V \downarrow i, g \downarrow p)$
 - 3. Move (Project Down) the vector $V \downarrow i$ to direction $g \downarrow j$.

• Run Cheeger rounding along each direction $g \downarrow i$, output the cuts of expansion $\leq O(\sqrt{\lambda} \downarrow k \log k)$

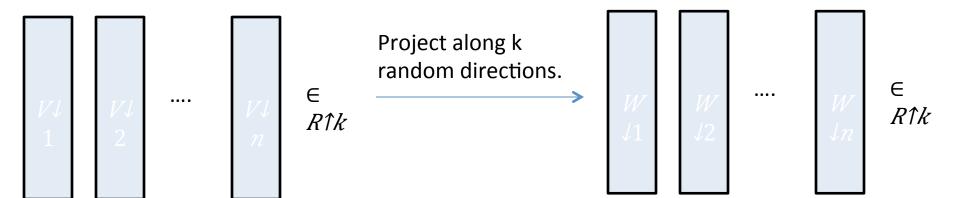


Observation:

:.**.**..

Sets produced are disjoint

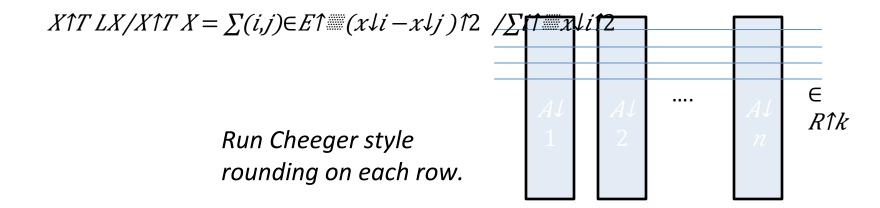
Algorithm Again



Need to Prove:

For at least a constant fraction of rows of A The Rayleigh coefficient $\leq O(\lambda \downarrow k \log k)$

For each $W \downarrow i$ Zero out all but the largest coordinate.

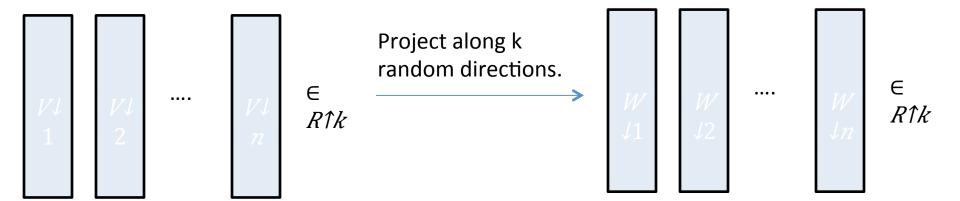


Algorithm Analysis

Need to Prove:

For at least a constant fraction of rows of A The Rayleigh coefficient $\leq O(\lambda lk \log k)$

$$X \uparrow T LX/X \uparrow T X = \sum (i,j) \in E \uparrow (x,j)$$



Fact:

Gaussian projection preserves squared distances in expectation.

Rayleigh coefficient of rows of W is roughly the Rayleigh coefficient of rows of $V \leq \lambda \downarrow k$

Need to Prove:

For at least a constant fraction of rows of A The Rayleigh coefficient $\leq O(\lambda \downarrow k \log k)$

Denominator in Expectation:

$$E\sum_{i}i^{\uparrow} = 0(1)$$

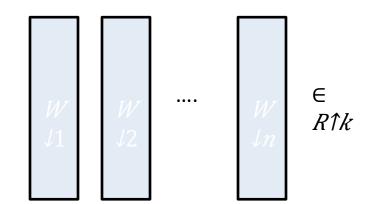
$$\log_{k} / k E\sum_{i}i^{\uparrow} = 0$$

$$W_{i}1i^{\uparrow}2$$

1/k -fraction of the mass survives , but the topmost survives.

Numerator in Expectation:

Algorithm Analysis



For each $W \downarrow i$ Zero out all but the largest coordinate.

[Charikar-Makarychev-Makarychev] Let $X \downarrow 1$, $X \downarrow 2$,... $X \downarrow k$ and $Y \downarrow 1$, $Y \downarrow 2$,... $Y \downarrow k$ be Gaussian random variables such that

 $X \downarrow i$, $Y \downarrow i$ is $1 - \epsilon$ correlated $X \downarrow i$, $X \downarrow j$ are uncorrelated,

 $\Pr[\operatorname{argmax} \downarrow i \ X \downarrow i \neq argmax \downarrow i \ Y \downarrow i] \leq O(\sqrt{\epsilon} \log k)$

Need to Prove:

For at least a constant fraction of rows of A The Rayleigh coefficient $\leq O(\lambda \downarrow k \log k)$

Bounding Variance of Denominator

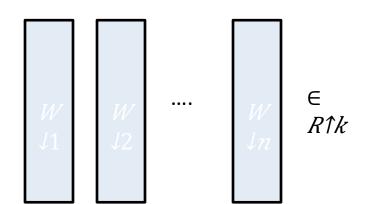
Use the fact that the rows (eigenvectors) are orthogonal!!

→ Average inner product between the columns is low

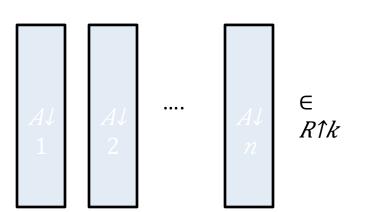
Lemma: Average squared length of $W \downarrow i = 1$, The average correlation between random pairs $\leq 1/k$

- + basic Hermite polynomials.
- = Bound on the variance.

Algorithm Analysis



For each $W \downarrow i$ Zero out all but the largest coordinate.



Small Set Expanders with Many Large Eigenvalues

$$SSE(\delta,\epsilon)$$

(STILL OPEN)

Given a graph G decide if,

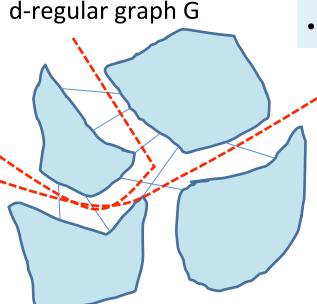
Φ↓G (δ)≤ε

G has a non-expanding small set

OR

• $\Phi \downarrow G(\delta) > 1/10$

G is a " δ -small set expander"



threshold rank $\downarrow \epsilon$ (G) $\stackrel{\text{def}}{=}$ # of eigenvalues of graph G that are $\leq \epsilon$

Subspace search runs in time n70 (threshold rank $\downarrow \epsilon$ (G)

Question:

If G is a δ -small set expander, How many eigenvalues $\leq \epsilon$ can it have?

[Arora-Barak-Steurer 2010]

For a δ -small set expander G thresholdrank $\downarrow \epsilon \leq N \uparrow \sqrt{\epsilon} / \delta$ A subexponential-time algorithm for $SSE(\delta, \epsilon)$

[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer]

For all small constant δ ,

There exists a graph (the Short Code Graph) that is a δ -small set expander with $\exp(\log \hat{\tau} \beta n)$ eigenvalues $\geq 1 - \epsilon$., *i.e.*,

threshold $rank \downarrow 1 - \epsilon(G) \ge \exp(\log f \beta N)$ for some β depending on ϵ .

[BGHMRS 11] $\exp(\log \hat{\tau} \beta N) \leq threshold \ rank \downarrow \epsilon \ (G) \leq N \hat{\tau} \epsilon$ [ABS]

- Led to improved gadget constructions and integrality gaps for semidefinite programming relaxations.
- An n-point $L \downarrow 212$ -metric that requires distortion $21\Omega(\sqrt{loglog}\,n)$ to embed in to L_1

[Kane-Meka]

Overview

Long Code/Noisy Hypercube Graph

- Eigenvectors
- Small Set Expansion

Short Code Graph

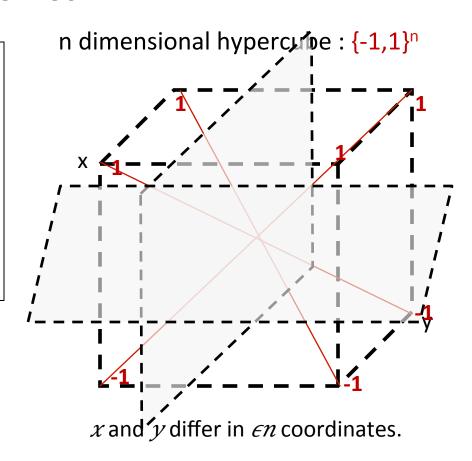
The Long Code Graph aka Noisy Hypercube

Noise Graph/Frankl-Rodl graphs: $H\downarrow\epsilon$

Vertices: $\{-1,1\}$ $\uparrow n$

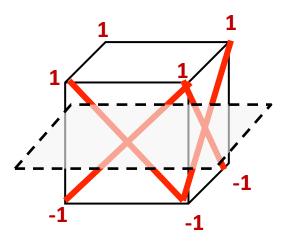
Edges: Connect every pair of points in hypercube separated by a Hamming distance of ϵn

Eigenvectors are functions on $\{-1,1\}$ $\uparrow n$



Dictator cuts: Cuts parallel to the Axis (given by $F(x) = x \downarrow i$)

The dictator cuts yield n sparse cuts in graph $H\downarrow\epsilon$



n dimensional hypercube

Sparsity of Dictator Cuts

Connect every pair of vertices in hypercube separated by Hamming distance of ϵn

```
Fraction of edges cut by first dictator

=\Pr-random edge (x,y) [(x,y) is cut]

=\Pr-random edge (x,y) [x \downarrow 1 \neq y \downarrow 1]

=\epsilon
```

Dictator cuts: n-eigenvectors with eigenvalues ϵ for graph $H \downarrow \epsilon$ (Number of vertices $N = 2 \uparrow n$, so #of eigenvalues = $\log N$)

Eigenfunctions for Noisy Hypercube Graph

Eigenfunctions for the Noisy hypercube graph are multilinear polynomials of fixed degree.

(Noisy hypercube is a Cayley graph on $Z\!\!\downarrow\!\!2\uparrow\uparrow\!\!n$, therefore its eigen functions are characters of the group)

Eigenfunction Eigenvalue

$$F \downarrow 1 \ (x) = x \downarrow 1$$
, $F \downarrow 2 \ (x) = x \downarrow 2$, ..., $F \downarrow n \ (x) = x \downarrow n$

$$F \downarrow 12 (x) = x \downarrow 1 \ x \downarrow 2$$
, $F \downarrow 23 (x) = x \downarrow 2 \ x \downarrow 3$, ... $F \downarrow n - 1n (x) = x \downarrow n - 1 \ x \downarrow n$
 $\approx 1 - (1 - \epsilon) \uparrow 2$

......

Degree d multilinear polynomials

$$\approx 1 - (1 - \epsilon) \uparrow d$$

Top Eigenspace = Low degree polynomials over the hypercube.

Hypercontractivity

Definition: (Hypercontractivity)

A subspace $S \in R \uparrow N$ is hypercontractive if for all $w \in S$

$$||w|| \downarrow 4 \le C||w|| \downarrow 2$$

Projector $P \downarrow S$ in to the subspace S, also called hypercontractive.

(No-Sparse-Vectors)

Roughly, No sparse vectors in a hypercontractive subspace \mathcal{S} because,

w is δ -sparse " \Leftrightarrow " $||w|| \downarrow 4 / ||w|| \downarrow 2 > 1/\delta \uparrow 1/4$

Hypercontractivity implies Small-Set Expansion

 $P \downarrow 1 - \epsilon = \text{projector into span of eigenvectors of } G \text{ with eigenvalue } \geq 1 - \epsilon$

 $P \downarrow 1 - \epsilon$ is hypercontractive

 \rightarrow

No sparse vector in span of top eigenvectors of G

 \rightarrow

No small non-expanding set in G. (G is a small set expander)

Hypercontractivity for Noisy Hypercube

Top eigenfunctions of noisy hypercube are low degree polynomials.

(Hypercontractivity of Low Degree Polynomials)

For a degree d multilinear polynomial f on $\{-1,1\}$ $\uparrow n$, ||f|| $\downarrow 4 \leq 9$ $\uparrow d$ ||f|| $\downarrow 2$

(Noisy Hypercube is a Small-Set Expander)

For constant ϵ , the noisy hypercube is a small-set expander.

Moreover, the noisy hypercube has $N=2 \ln n$ vertices and n eigenvalues larger than $1-\epsilon$.

[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer 2009]

For all small constant δ ,

There exists a graph (the Short Code Graph) that is a δ -small set expander with $\exp(\log \hbar \beta n)$ eigenvalues $\geq 1-\epsilon$., *i.e.*,

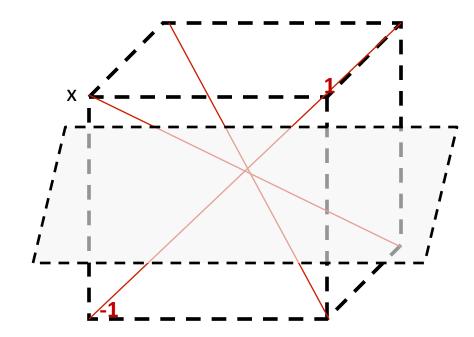
 $threshold \ rank \downarrow 1 - \epsilon \ (G) \ge \exp(\log f \beta \ N)$

for some β depending on ϵ .

Noise Graph: $H\downarrow\epsilon$

Vertices: $\{-1,1\}$ $\uparrow n$

Edges: Connect every pair of points in hypercube separated by a Hamming distance of ϵn



Has *n* sparse cuts, but $N=2 \uparrow n$ vertices -- too many vertices!

Idea:

Pick a subset of vertices of the long code graph, and their induced subgraph.

- 1. The dictator cuts still yield *n*-sparse cuts
- 2. The subgraph is a small-set expander!

If **Choice:** Reed Muller Codewords of large constant degree.

1/100

Noise Graph: $H \downarrow \epsilon$

Vertices:

All boolean functions on k bits

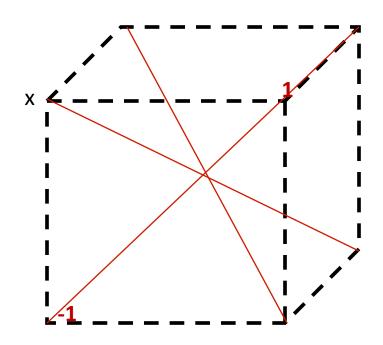
Edges: Connect every pair of points in hypercube separated by a Hamming distance of ϵn

Fix
$$n = 2 \mathcal{T} k$$
 and $\epsilon = 2 \mathcal{T} - d$

All degree d polynomials **Vertices:** over $F \downarrow 2 = \{0,1\}$ in k

Edges: Connect every pair of points

separated by a Hamming distance of ϵn



Equivalently, Connect every pair of polynomials (p,q)

With
$$p(x) = q(x) + L \downarrow 1(x) L \downarrow 2(x) \dots$$

 $L \downarrow d(x)$

where $L \downarrow i(x)$ are linear functions.

Short Code Graph

Vertices: All degree d polynomials

over $F \downarrow 2 = \{0,1\}$ in k

Edges: Connect every pair of points

separated by a Hamming distance of ϵn

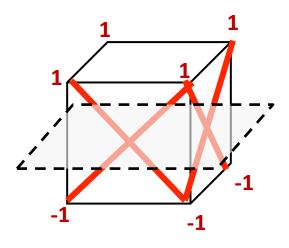
Equivalently, Connect every pair of polynomials (p,q) With $p(x) = q(x) + L \downarrow 1$ $(x) L \downarrow 2$ (x) ... $L\downarrow d(x)$

where $L \downarrow i(x)$ are linear functions.

Assuming,

- 1. The dictator cuts still yield *n*-sparse cuts
- 2. The subgraph is a small-set expander!

```
Threshold_rank\downarrow \epsilon = n while number of vertices N = 2 \uparrow O(n \uparrow d)
                           =2 l \log 11
                           dN
```



n dimensional hypercube

Sparsity of Dictator Cuts

Connect every pair of vertices in hypercube separated by Hamming distance of ϵn

Sparsity of dictator cuts holds for every induced subgraph.

Because,

Each edge is cut by exactly ϵn dictators, so at least n/2 dictators cut less than 2ϵ fraction of edges.

Preserving Small Set Expansion

Top eigenfunctions of noisy hypercube are low degree polynomials.

+

(Hypercontractivity of Low Degree Polynomials)

For a degree d multilinear polynomial f on $\{-1,1\} \uparrow n$, $\|f\| / 4 \le 9 \uparrow d \|f\| / 2$

(Noisy Hypercube is a Small-Set Expander) For constant ϵ , the noisy hypercube is a small-set expander.

Preserving hypercontractivity

(Hypercontractivity of Low Degree Polynomials)

For a degree d multilinear polynomial f on $\{-1,1\}$ $\uparrow n$, ||f|| $\downarrow 4 \leq 9$ $\uparrow d$ ||f|| $\downarrow 2$

For a degree d polynomial f,

By hypercontractivity over hypercube,

$$E\downarrow x \in \{-1,1\} \uparrow n \ [f(x) \uparrow 4] \le 9 \uparrow 4d \ (E\downarrow x \in \{-1,1\} \uparrow n \ [f(x)]) \uparrow 2$$

We picked a subset $S \subset \{-1,1\} \uparrow n$ and so we want,

$$E\downarrow x\in S[f(x)\uparrow 4]\leq 9\uparrow 4d(E\downarrow x\in S[f(x)])\uparrow 2$$

f is degree d, so f?4 and f?2 are degree $\leq 4d$.

If S is a 4d-wise independent set then,

$$E \downarrow x \in S [f(x) \uparrow 4] = E \downarrow x \in \{-1,1\} \uparrow n [f(x) \uparrow 4] \le 9 \uparrow 4d (E \downarrow x \in \{-1,1\} \uparrow n [f(x)]) \uparrow 2$$

= $9 \uparrow 4d (E \downarrow x \in S [f(x)]) \uparrow 2$

Preserving Eigenspaces

Top eigenfunctions of noisy hypercube are low degree polynomials.

We Want:

Only top eigenfunctions on the short code graph are also low degree polynomials.

Bounding the Eigenvalues

Fix
$$y \nmid 1$$
, $y \nmid 2$,..., $y \nmid k \in \{0,1\} \uparrow k$,

Over choice of random affine forms $L\downarrow 1$ $(x), L\downarrow 2$ $(x), ... L\downarrow d$ (x) over $F\downarrow 2$

Show that $\sum i \uparrow = \prod j \uparrow = L \downarrow j (y \downarrow i)$ has bias less than $O(k/2 \uparrow d)$

Connected to **local-testability** of the dual of the underlying code!

We appeal to local testability result of Reed-Muller codes

[Bhattacharya-Kopparty-Schoenebeck-Sudan-Zuckermann]

Mimicking the hypercube

[Barak-Gopalan-Hastad-Meka-Raghavendra-Steurer 2009]

'Majority is Stablest' theorem also holds for the short code.

Open Questions

Question:

If G is a δ -small set expander, How many eigenvalues $\leq \epsilon$ can it have?

[BGHMRS 11] $\exp(\log \hat{\tau} \beta N) \le threshold \ rank \downarrow \epsilon \ (G) \le N \hat{\tau} \epsilon$ [ABS]

Efficient Certificate for Vertex Expansion:

Given a graph G, find an algorithm to distinguish between,

- a) G has a set with vertex expansion $\leq \epsilon$
- b) G is a vertex expander (expansion > 0.1)

(No restriction on set size)

Harder than small set expansion [Louis-R-Vempala 13]

Thank You