Discrete Ricci curvature via convexity of the entropy

Jan Maas University of Bonn

Joint work with Matthias Erbar

Simons Institute for the Theory of Computing UC Berkeley

2 October 2013

McCann '94: beautiful connection between

McCann '94: beautiful connection between

• Boltzmann-Shannon entropy

McCann '94: beautiful connection between

- Boltzmann-Shannon entropy
- 2-Wasserstein metric from optimal transport

McCann '94: beautiful connection between

- Boltzmann-Shannon entropy
- 2-Wasserstein metric from optimal transport

Relative entropy

Let m be a reference measure on \mathcal{X}

For
$$
\mu \in \mathcal{P}(\mathcal{X})
$$
: Ent_m(μ) =
$$
\begin{cases} \int_{\mathcal{X}} \rho(x) \log \rho(x) d m(x), & \frac{d \mu}{dm} = \rho, \\ +\infty, & \text{otherwise.} \end{cases}
$$

The optimal transport problem (with quadratic cost)

The optimal transport problem (with quadratic cost) Let (\mathcal{X}, d) be a Polish space and let $\mu, \nu \in \mathcal{P}(\mathcal{X})$.

The optimal transport problem (with quadratic cost) Let (\mathcal{X}, d) be a Polish space and let $\mu, \nu \in \mathcal{P}(\mathcal{X})$.

Definition of the 2-Wasserstein metric

$$
W_2(\mu,\nu)^2 := \inf \left\{ \int_{\mathcal{X}\times\mathcal{X}} d(x,y)^2 \, d\gamma(x,y) : \right. \newline \gamma \text{ with marginals } \mu \text{ and } \nu \left\}
$$

The optimal transport problem (with quadratic cost) Let (\mathcal{X}, d) be a Polish space and let $\mu, \nu \in \mathcal{P}(\mathcal{X})$.

Definition of the 2-Wasserstein metric

$$
W_2(\mu, \nu)^2 := \inf \left\{ \int_{\mathcal{X} \times \mathcal{X}} d(x, y)^2 d\gamma(x, y) : \right. \newline \gamma \text{ with marginals } \mu \text{ and } \nu \right\}
$$

$$
= \inf \left\{ \mathbb{E}[d(X, Y)^2] : \text{ law}(X) = \mu, \text{ law}(Y) = \nu \right\}
$$

The optimal transport problem (with quadratic cost) Let (\mathcal{X}, d) be a Polish space and let $\mu, \nu \in \mathcal{P}(\mathcal{X})$.

Definition of the 2-Wasserstein metric

$$
W_2(\mu, \nu)^2 := \inf \left\{ \int_{\mathcal{X} \times \mathcal{X}} d(x, y)^2 d\gamma(x, y) : \right.
$$

$$
\gamma \text{ with marginals } \mu \text{ and } \nu \right\}
$$

$$
= \inf \left\{ \mathbb{E}[d(X, Y)^2] : \text{ law}(X) = \mu, \text{ law}(Y) = \nu \right\}
$$

Properties

- W_2 defines a metric on $\mathcal{P}_2(\mathcal{X})$.
- (\mathcal{X}, d) is a geodesic space \Rightarrow $(\mathcal{P}_2(\mathcal{X}), W_2)$ is a geodesic space.

Theorem (McCann '94)

The entropy is convex along geodesics in $(\mathcal{P}_2(\mathbf{R}^n), W_2)$.

Theorem (McCann '94)

The entropy is convex along geodesics in $(\mathcal{P}_2(\mathbf{R}^n), W_2)$.

Theorem (McCann '94)

The entropy is convex along geodesics in $(\mathcal{P}_2(\mathbf{R}^n), W_2)$.

Construction of geodesics in the 2-Wasserstein space $\mathcal{P}_2(\mathbf{R}^n)$

• Let γ be an optimal coupling of μ and ν

Theorem (McCann '94)

The entropy is convex along geodesics in $(\mathcal{P}_2(\mathbf{R}^n), W_2)$.

- Let γ be an optimal coupling of μ and ν
- If μ is a.c., then γ is supported on the graph of a function $\Psi : \mathbf{R}^n \to \mathbf{R}^n$ (by Brenier's Theorem).

Theorem (McCann '94)

The entropy is convex along geodesics in $(\mathcal{P}_2(\mathbf{R}^n), W_2)$.

- Let γ be an optimal coupling of μ and ν
- If μ is a.c., then γ is supported on the graph of a function $\Psi : \mathbf{R}^n \to \mathbf{R}^n$ (by Brenier's Theorem).
- For $t \in [0, 1]$, set $\Psi_t(x) := (1 t)x + t\Psi(x)$.

Theorem (McCann '94)

The entropy is convex along geodesics in $(\mathcal{P}_2(\mathbf{R}^n), W_2)$.

- Let γ be an optimal coupling of μ and ν
- If μ is a.c., then γ is supported on the graph of a function $\Psi : \mathbf{R}^n \to \mathbf{R}^n$ (by Brenier's Theorem).
- For $t \in [0, 1]$, set $\Psi_t(x) := (1 t)x + t\Psi(x)$.
- Let μ_t be the image measure of μ under Ψ_t .

Theorem (McCann '94)

The entropy is convex along geodesics in $(\mathcal{P}_2(\mathbf{R}^n), W_2)$.

- Let γ be an optimal coupling of μ and ν
- If μ is a.c., then γ is supported on the graph of a function $\Psi : \mathbf{R}^n \to \mathbf{R}^n$ (by Brenier's Theorem).
- For $t \in [0, 1]$, set $\Psi_t(x) := (1 t)x + t\Psi(x)$.
- Let μ_t be the image measure of μ under Ψ_t .
- Then: (μ_t) is a constant speed geodesic from μ to ν .

Theorem (McCann '94)

The entropy is convex along geodesics in $(\mathcal{P}_2(\mathbf{R}^n), W_2)$.

Construction of geodesics in the 2-Wasserstein space $\mathcal{P}_2(\mathbf{R}^n)$

- Let γ be an optimal coupling of μ and ν
- If μ is a.c., then γ is supported on the graph of a function $\Psi : \mathbf{R}^n \to \mathbf{R}^n$ (by Brenier's Theorem).
- For $t \in [0, 1]$, set $\Psi_t(x) := (1 t)x + t\Psi(x)$.
- Let μ_t be the image measure of μ under Ψ_t .
- Then: (μ_t) is a constant speed geodesic from μ to ν .

Highly non-linear interpolation based on *geometry* of the underlying space!

Theorem (McCann '94)

The entropy is convex along geodesics in $(\mathcal{P}_2(\mathbf{R}^n), W_2)$.

Theorem (McCann '94)

The entropy is convex along geodesics in $(\mathcal{P}_2(\mathbf{R}^n), W_2)$.

Theorem (Otto–Villani '00, Cordero–McCann– SCHMUCKENSCHLÄGER '01, VON RENESSE–STURM '05)

For a Riemannian manifold M . TFAE:

1. Displacement κ -convexity of the entropy:

Ent(
$$
\mu_t
$$
) \leq (1 – *t*)Ent(μ_0) + *t*Ent(μ_1)
– $\frac{\kappa}{2}$ *t*(1 – *t*) $W_2^2(\mu_0, \mu_1)$

for all 2-Wasserstein geodesics $(\mu_t)_{t\in[0,1]}$;

Theorem (McCann '94)

The entropy is convex along geodesics in $(\mathcal{P}_2(\mathbf{R}^n), W_2)$.

Theorem (Otto–Villani '00, Cordero–McCann– SCHMUCKENSCHLÄGER '01, VON RENESSE–STURM '05)

For a Riemannian manifold M . TFAE:

1. Displacement κ -convexity of the entropy:

Ent(
$$
\mu_t
$$
) \leq (1 – *t*)Ent(μ_0) + *t*Ent(μ_1)
– $\frac{\kappa}{2}$ *t*(1 – *t*) $W_2^2(\mu_0, \mu_1)$

for all 2-Wasserstein geodesics $(\mu_t)_{t\in[0,1]}$; 2. Ric $\geq \kappa$ everywhere on M.

Theorem (McCann '94)

The entropy is convex along geodesics in $(\mathcal{P}_2(\mathbf{R}^n), W_2)$.

Theorem (Otto–Villani '00, Cordero–McCann– SCHMUCKENSCHLÄGER '01, VON RENESSE–STURM '05)

For a Riemannian manifold M , TFAE:

1. Displacement κ -convexity of the entropy:

Ent(
$$
\mu_t
$$
) \leq (1 – *t*)Ent(μ_0) + *t*Ent(μ_1)
– $\frac{\kappa}{2}$ *t*(1 – *t*) $W_2^2(\mu_0, \mu_1)$

for all 2-Wasserstein geodesics $(\mu_t)_{t\in[0,1]}$; 2. Ric $\geq \kappa$ everywhere on M.

Definition (STURM '06, LOTT-VILLANI '09)

A metric measure space (\mathcal{X}, d, m) satisfies Ric $(\mathcal{X}) \geq \kappa$ if

Ent(
$$
\mu_t
$$
) \leq (1 – t) Ent(μ_0) + t Ent(μ_1) – $\frac{\kappa}{2}$ t (1 – t) W_2^2 (μ_0, μ_1)

along all W₂-geodesics $(\mu_t)_{t\in[0,1]}$ in $\mathcal{P}(\mathcal{X})$.

Definition (STURM '06, LOTT-VILLANI '09)

A metric measure space (\mathcal{X}, d, m) satisfies Ric $(\mathcal{X}) \geq \kappa$ if

Ent(
$$
\mu_t
$$
) \leq (1 – t) Ent(μ_0) + t Ent(μ_1) – $\frac{\kappa}{2}$ t (1 – t) W_2^2 (μ_0, μ_1)

along all W₂-geodesics $(\mu_t)_{t\in[0,1]}$ in $\mathcal{P}(\mathcal{X})$.

Crucial features

Definition (S_{TURM} '06, LOTT–VILLANI '09)

A metric measure space (\mathcal{X}, d, m) satisfies Ric $(\mathcal{X}) \geq \kappa$ if

Ent(
$$
\mu_t
$$
) \leq (1 – t) Ent(μ_0) + t Ent(μ_1) – $\frac{\kappa}{2}$ t (1 – t) W_2^2 (μ_0, μ_1)

along all W₂-geodesics $(\mu_t)_{t\in[0,1]}$ in $\mathcal{P}(\mathcal{X})$.

Crucial features

• Applicable to a wide class of metric measure spaces

Definition ($STURM$ '06, LOTT–VILLANI '09)

A metric measure space (\mathcal{X}, d, m) satisfies Ric $(\mathcal{X}) \geq \kappa$ if

Ent(
$$
\mu_t
$$
) \leq (1 – t) Ent(μ_0) + t Ent(μ_1) – $\frac{\kappa}{2}$ t (1 – t) W_2^2 (μ_0, μ_1)

along all W₂-geodesics $(\mu_t)_{t\in[0,1]}$ in $\mathcal{P}(\mathcal{X})$.

Crucial features

- Applicable to a wide class of metric measure spaces
- Many geometric, analytic and probabilistic consequences
	- \rightarrow logarithmic Sobolev, Talagrand, Poincaré inequalities; Brunn-Minkowski.

Definition ($STURM$ '06, LOTT–VILLANI '09)

A metric measure space (\mathcal{X}, d, m) satisfies Ric $(\mathcal{X}) \geq \kappa$ if

Ent(
$$
\mu_t
$$
) \leq (1 – t) Ent(μ_0) + t Ent(μ_1) – $\frac{\kappa}{2}$ t (1 – t) W_2^2 (μ_0, μ_1)

along all W₂-geodesics $(\mu_t)_{t\in[0,1]}$ in $\mathcal{P}(\mathcal{X})$.

Crucial features

- Applicable to a wide class of metric measure spaces
- Many geometric, analytic and probabilistic consequences \rightarrow logarithmic Sobolev, Talagrand, Poincaré inequalities; Brunn-Minkowski.
- Stability under measured Gromov–Hausdorff convergence

Definition ($STURM$ '06, LOTT–VILLANI '09)

A metric measure space (\mathcal{X}, d, m) satisfies Ric $(\mathcal{X}) \geq \kappa$ if

Ent(
$$
\mu_t
$$
) $\leq (1-t) Ent(\mu_0) + t Ent(\mu_1) - \frac{\kappa}{2}t(1-t)W_2^2(\mu_0, \mu_1)$

along all W₂-geodesics $(\mu_t)_{t\in[0,1]}$ in $\mathcal{P}(\mathcal{X})$.

Crucial features

- Applicable to a wide class of metric measure spaces
- Many geometric, analytic and probabilistic consequences → logarithmic Sobolev, Talagrand, Poincaré inequalities; Brunn-Minkowski.
- Stability under measured Gromov–Hausdorff convergence

But..... what about discrete spaces?

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha \delta_1$ for $\alpha \in [0, 1]$.

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha \delta_1$ for $\alpha \in [0, 1]$. Then:

$$
W_2(\mu_\alpha,\mu_\beta)=\sqrt{|\alpha-\beta|}\ .
$$

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha \delta_1$ for $\alpha \in [0, 1]$. Then:

$$
W_2(\mu_\alpha,\mu_\beta)=\sqrt{|\alpha-\beta|}\ .
$$

 \bullet Suppose that $(\mu_{\alpha(t)})$ is a constant speed geodesic.

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha \delta_1$ for $\alpha \in [0, 1]$. Then:

$$
W_2(\mu_\alpha,\mu_\beta)=\sqrt{|\alpha-\beta|}\ .
$$

 \bullet Suppose that $\big(\mu_{\alpha(t)}\big)$ is a constant speed geodesic. Then:

$$
W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t-s|.
$$

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha \delta_1$ for $\alpha \in [0, 1]$. Then:

$$
W_2(\mu_\alpha,\mu_\beta)=\sqrt{|\alpha-\beta|}\ .
$$

 \bullet Suppose that $\big(\mu_{\alpha(t)}\big)$ is a constant speed geodesic. Then:

$$
\sqrt{|\alpha(t) - \alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t - s|.
$$

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha \delta_1$ for $\alpha \in [0, 1]$. Then:

$$
W_2(\mu_\alpha,\mu_\beta)=\sqrt{|\alpha-\beta|}\ .
$$

 \bullet Suppose that $\big(\mu_{\alpha(t)}\big)$ is a constant speed geodesic. Then:

$$
\sqrt{|\alpha(t)-\alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t-s|.
$$

 \rightarrow $(\alpha(t))$ is 2-Hölder, hence constant.

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha \delta_1$ for $\alpha \in [0, 1]$. Then:

$$
W_2(\mu_\alpha,\mu_\beta)=\sqrt{|\alpha-\beta|}\ .
$$

 \bullet Suppose that $\big(\mu_{\alpha(t)}\big)$ is a constant speed geodesic. Then:

$$
\sqrt{|\alpha(t)-\alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t-s|.
$$

 \rightarrow ($\alpha(t)$) is 2-Hölder, hence constant.

• Thus: there are no non-trivial W_2 -geodesics. In fact:
What about discrete spaces?

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha \delta_1$ for $\alpha \in [0, 1]$. Then:

$$
W_2(\mu_\alpha,\mu_\beta)=\sqrt{|\alpha-\beta|}\ .
$$

 \bullet Suppose that $\big(\mu_{\alpha(t)}\big)$ is a constant speed geodesic. Then:

$$
\sqrt{|\alpha(t) - \alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t - s|.
$$

 \rightarrow $(\alpha(t))$ is 2-Hölder, hence constant.

• Thus: there are no non-trivial W_2 -geodesics. In fact:

 $(\mathcal{P}_2(\mathcal{X}), \mathcal{W}_2)$ is a geodesic space $\Leftrightarrow (\mathcal{X}, d)$ is a geodesic space.

What about discrete spaces?

Example: 2-point space $\mathcal{X} = \{0, 1\}$.

• Set $\mu_{\alpha} := (1 - \alpha)\delta_0 + \alpha \delta_1$ for $\alpha \in [0, 1]$. Then:

$$
W_2(\mu_\alpha,\mu_\beta)=\sqrt{|\alpha-\beta|}\ .
$$

 \bullet Suppose that $\big(\mu_{\alpha(t)}\big)$ is a constant speed geodesic. Then:

$$
\sqrt{|\alpha(t) - \alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t - s|.
$$

 \rightarrow $(\alpha(t))$ is 2-Hölder, hence constant.

• Thus: there are no non-trivial W_2 -geodesics. In fact:

 $(\mathcal{P}_2(\mathcal{X}), \mathcal{W}_2)$ is a geodesic space $\Leftrightarrow (\mathcal{X}, d)$ is a geodesic space.

Conclusion: LSV-Definition does not apply to discrete spaces.

Ricci curvature of discrete spaces

Many approaches to discrete Ricci curvature:

- W_1 -contraction à la Dobrushin Ollivier ('09); Sammer ('05), Joulin ('09), Jost, Bauer, Hua, Liu $('11-. ...)$
- approximate W_2 -geodesics Bonciocat, Sturm ('09), Ollivier, Villani ('12)
- modified Bakry-Émery criterion Lin, Lu, S.-T. Yau ('11-. . .), Bauer, Horn, Lin, Lippner, Mangoubi, S.-T. Yau ('13)
- discrete displacement interpolation Gozlan, Roberto, Samson, Tetali ('12) [see next lecture!], Hillion ('12)

Ricci curvature of discrete spaces

Many approaches to discrete Ricci curvature:

- W_1 -contraction à la Dobrushin Ollivier ('09); Sammer ('05), Joulin ('09), Jost, Bauer, Hua, Liu ('11-...)
- approximate W_2 -geodesics Bonciocat, Sturm ('09), Ollivier, Villani ('12)
- modified Bakry-Émery criterion Lin, Lu, S.-T. Yau ('11-. . .), Bauer, Horn, Lin, Lippner, Mangoubi, S.-T. Yau ('13)
- discrete displacement interpolation Gozlan, Roberto, Samson, Tetali ('12) [see next lecture!], Hillion ('12)

Our goal: Find a notion of discrete Ricci curvature

- in the spirit of Lott-Sturm-Villani
- which allows to prove sharp functional inequalities.

Theorem [Jordan–Kinderlehrer–Otto '98]

The heat flow is the gradient flow of the entropy w.r.t W_2

Theorem [JORDAN–KINDERLEHRER–OTTO '98]

The heat flow is the gradient flow of the entropy w.r.t W_2

How to make sense of gradient flows in metric spaces?

Theorem [JORDAN-KINDERLEHRER-OTTO '98]

The heat flow is the gradient flow of the entropy w.r.t W_2

How to make sense of gradient flows in metric spaces?

Gradient flows in Rⁿ

Let $\varphi : \mathbf{R}^n \to \mathbf{R}$ smooth and convex. For $u : \mathbf{R}_+ \to \mathbf{R}^n$ TFAE:

- 1. *u* solves the gradient flow equation $u'(t) = -\nabla \varphi(u(t))$.
- 2. *u* solves the evolution variational inequality

$$
\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|u(t)-y|^2\leq \varphi(y)-\varphi(u(t))\qquad \forall y.
$$

 $($ DE GIORGI '93, AMBROSIO–GIGLI–SAVARÉ '05)

Theorem [JORDAN–KINDERLEHRER–OTTO '98]

The heat flow is the gradient flow of the entropy w.r.t W_2 , i.e., $\partial_t \mu = \Delta \mu \quad \Longleftrightarrow \quad \frac{1}{2}$ 2 d $\frac{d}{dt}W_2(\mu_t,\nu)^2 \leq \mathsf{Ent}(\nu) - \mathsf{Ent}(\mu_t) \qquad \forall \nu.$

How to make sense of gradient flows in metric spaces?

Gradient flows in Rⁿ

Let $\varphi : \mathbf{R}^n \to \mathbf{R}$ smooth and convex. For $u : \mathbf{R}_+ \to \mathbf{R}^n$ TFAE:

- 1. *u* solves the gradient flow equation $u'(t) = -\nabla \varphi(u(t))$.
- 2. *u* solves the evolution variational inequality

$$
\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|u(t)-y|^2\leq \varphi(y)-\varphi(u(t))\qquad \forall y.
$$

 $($ DE GIORGI '93, AMBROSIO–GIGLI–SAVARÉ '05)

Heat flow as gradient flow of the entropy

Many extensions have been proved:

- R^n
- Riemannian manifolds Villani, Erbar
-
- Finsler spaces Ohta–Sturm
-
- Heisenberg group Juillet
- Alexandrov spaces Gigli–Kuwada–Ohta
- Metric measures spaces Ambrosio–Gigli–Savaré

Jordan–Kinderlehrer–Otto Hilbert spaces Ambrosio–Savaré–Zambotti • Wiener space Fang-Shao-Sturm

Heat flow as gradient flow of the entropy

Many extensions have been proved:

- R^n
- Riemannian manifolds Villani, Erbar
-
- Finsler spaces Ohta–Sturm
-
- Heisenberg group Juillet
- Alexandrov spaces Gigli–Kuwada–Ohta
- Metric measures spaces Ambrosio–Gigli–Savaré

Jordan–Kinderlehrer–Otto Hilbert spaces Ambrosio–Savaré–Zambotti • Wiener space Fang–Shao–Sturm

Question

Is there a version of the JKO-Theorem for discrete spaces?

Discrete setting

Setting

- \mathcal{X} : finite set
- $K: \mathcal{X} \times \mathcal{X} \to \mathsf{R}_+$ Markov kernel, $\forall x \; : \; \sum_{y} K(x, y) = 1$
- π : reversible measure, $\forall x, y$: $K(x, y)\pi(x) = K(y, x)\pi(y)$

Discrete setting

Setting

- \mathcal{X} : finite set
- $K: \mathcal{X} \times \mathcal{X} \to \mathsf{R}_+$ Markov kernel, $\forall x \; : \; \sum_{y} K(x, y) = 1$
- π : reversible measure, $\forall x, y : K(x, y)\pi(x) = K(y, x)\pi(y)$

Heat flow

- Discrete Laplacian: $\Delta \psi(x) := \sum_\mathsf y \mathsf K(\mathsf x,\mathsf y)(\psi(\mathsf y)-\psi(\mathsf x))$
- Continuous time Markov semigroup: $P_t = e^{t\Delta}$

Discrete setting

Setting

- \mathcal{X} : finite set
- $K: \mathcal{X} \times \mathcal{X} \to \mathsf{R}_+$ Markov kernel, $\forall x \; : \; \sum_{y} K(x, y) = 1$
- π : reversible measure, $\forall x, y : K(x, y)\pi(x) = K(y, x)\pi(y)$

Heat flow

- Discrete Laplacian: $\Delta \psi(x) := \sum_\mathsf y \mathsf K(\mathsf x,\mathsf y)(\psi(\mathsf y)-\psi(\mathsf x))$
- Continuous time Markov semigroup: $P_t = e^{t\Delta}$

Relative Entropy

•
$$
\mathcal{P}(\mathcal{X}) := \left\{ \rho : \mathcal{X} \to \mathbf{R}_+ \mid \sum_{x \in \mathcal{X}} \rho(x) \pi(x) = 1 \right\},\
$$

• Ent(
$$
\rho
$$
) := $\sum_{x \in \mathcal{X}} \rho(x) \log \rho(x) \pi(x)$, $\rho \in \mathcal{P}(\mathcal{X})$.

$$
\mathcal{X} = \{0, 1\} \qquad \mathcal{K}(0, 1) = \mathcal{K}(1, 0) = 1 \qquad \pi(0) = \pi(1) = \frac{1}{2}
$$

 $\mathcal{X} = \{0, 1\}$ $\mathcal{K}(0, 1) = \mathcal{K}(1, 0) = 1$ $\pi(0) = \pi(1) = \frac{1}{2}$

Recall the notation: $\mu_{\alpha} = (1 - \alpha)\delta_0 + \alpha \delta_1$.

 $\mathcal{X} = \{0, 1\}$ $\mathcal{K}(0, 1) = \mathcal{K}(1, 0) = 1$ $\pi(0) = \pi(1) = \frac{1}{2}$

Recall the notation: $\mu_{\alpha} = (1 - \alpha)\delta_0 + \alpha \delta_1$.

Question

Is the heat flow on $\{0,1\}$ the gradient flow of the entropy w.r.t. the L^2 -Wasserstein metric?

 $\mathcal{X} = \{0, 1\}$ $\mathcal{K}(0, 1) = \mathcal{K}(1, 0) = 1$ $\pi(0) = \pi(1) = \frac{1}{2}$

Recall the notation: $\mu_{\alpha} = (1 - \alpha)\delta_0 + \alpha \delta_1$.

Question

Is the heat flow on $\{0,1\}$ the gradient flow of the entropy w.r.t. the L^2 -Wasserstein metric?

Answer

NO! Reason:
$$
W_2(\mu_\alpha, \mu_\beta) = \sqrt{|\alpha - \beta|}
$$
.

 $\mathcal{X} = \{0, 1\}$ $\mathcal{K}(0, 1) = \mathcal{K}(1, 0) = 1$ $\pi(0) = \pi(1) = \frac{1}{2}$

Recall the notation: $\mu_{\alpha} = (1 - \alpha)\delta_0 + \alpha \delta_1$.

Question

Is the heat flow on $\{0,1\}$ the gradient flow of the entropy w.r.t. some other metric on $\mathcal{P}(\{-1,1\})$?

 $\mathcal{X} = \{0, 1\}$ $\mathcal{K}(0, 1) = \mathcal{K}(1, 0) = 1$ $\pi(0) = \pi(1) = \frac{1}{2}$

Recall the notation: $\mu_{\alpha} = (1 - \alpha)\delta_0 + \alpha \delta_1$.

Question

Is the heat flow on $\{0,1\}$ the gradient flow of the entropy w.r.t. some other metric on $P({-1, 1})$?

Answer

YES!

 $\mathcal{X} = \{0, 1\}$ $\mathcal{K}(0, 1) = \mathcal{K}(1, 0) = 1$ $\pi(0) = \pi(1) = \frac{1}{2}$

Recall the notation: $\mu_{\alpha} = (1 - \alpha)\delta_0 + \alpha\delta_1$.

Question

Is the heat flow on $\{0,1\}$ the gradient flow of the entropy w.r.t. some other metric on $P({-1, 1})$?

Answer

YES!

Proposition [M. 2011]

The heat flow is the gradient flow of Ent w.r.t. the metric W , where

$$
\mathcal{W}(\mu_\alpha,\mu_\beta):=\sqrt{2}\int_\alpha^\beta\sqrt{\frac{\arctanh(2r-1)}{2r-1}}\,\mathrm{d} r,\qquad 0\le\alpha\le\beta\le1.
$$

 $\mathcal{X} = \{0, 1\}$ $\mathcal{K}(0, 1) = \mathcal{K}(1, 0) = 1$ $\pi(0) = \pi(1) = \frac{1}{2}$

Recall the notation: $\mu_{\alpha} = (1 - \alpha)\delta_0 + \alpha \delta_1$.

Question

Is the heat flow on $\{0,1\}$ the gradient flow of the entropy w.r.t. some other metric on $P({-1, 1})$?

Answer

YES!

Proposition [M. 2011]

The heat flow is the gradient flow of Ent w.r.t. the metric W , where

$$
\mathcal{W}(\mu_\alpha,\mu_\beta):=\sqrt{2}\int_\alpha^\beta\sqrt{\frac{\arctanh(2r-1)}{2r-1}}\,\mathrm{d} r,\qquad 0\le\alpha\le\beta\le 1.
$$

How to generalise this to the general discrete case?

• If $t \mapsto \rho_t$ is smooth, the continuity equation

$$
\partial_t \rho + \mathsf{div}(\rho \Psi) = 0
$$

holds for some velocity vector field $\Psi(t, x)$.

• If $t \mapsto \rho_t$ is smooth, the continuity equation

 $\partial_t \rho + \text{div}(\rho \Psi) = 0$

holds for some velocity vector field $\Psi(t, x)$.

• If $t \mapsto \rho_t$ is smooth, the continuity equation

 $\partial_t \rho + \text{div}(\rho \Psi) = 0$

holds for some velocity vector field $\Psi(t, x)$.

• For a.e. t, \exists a unique gradient $\Psi_t = \nabla \psi_t$ solving cont.eq.

• If $t \mapsto \rho_t$ is smooth, the continuity equation

 $\partial_t \rho + \text{div}(\rho \Psi) = 0$

holds for some velocity vector field $\Psi(t, x)$.

- For a.e. t, \exists a unique gradient $\Psi_t = \nabla \psi_t$ solving cont.eq.
- Regard $\nabla\psi_t$ as "tangent vector" at $\rho_t.$

• If $t \mapsto \rho_t$ is smooth, the continuity equation

 $\partial_t \rho + \text{div}(\rho \Psi) = 0$

holds for some velocity vector field $\Psi(t, x)$.

- For a.e. t, \exists a unique gradient $\Psi_t = \nabla \psi_t$ solving cont.eq.
- Regard $\nabla\psi_t$ as "tangent vector" at $\rho_t.$
- For $\rho \in \mathcal{P}(\mathbf{R}^n)$, define an inner product by

$$
\langle \nabla \varphi, \nabla \psi \rangle_{\rho} = \int_{\mathbf{R}^n} \langle \nabla \varphi(x), \nabla \psi(x) \rangle \rho(x) dx.
$$

 \bullet If $t \mapsto \rho_t$ is smooth, the continuity equation

 $\partial_t \rho + \text{div}(\rho \Psi) = 0$

holds for some velocity vector field $\Psi(t, x)$.

- For a.e. t, \exists a unique gradient $\Psi_t = \nabla \psi_t$ solving cont.eq.
- Regard $\nabla\psi_t$ as "tangent vector" at $\rho_t.$
- For $\rho \in \mathcal{P}(\mathbf{R}^n)$, define an inner product by

$$
\langle \nabla \varphi, \nabla \psi \rangle_{\rho} = \int_{\mathbf{R}^n} \langle \nabla \varphi(x), \nabla \psi(x) \rangle \rho(x) dx.
$$

Associated Riemannian distance (Benamou-Brenier formula)

$$
\inf_{\rho_{\cdot},\psi_{\cdot}}\left\{\left.\int_{0}^{1}\left\|\nabla\psi_{t}\right\|_{\rho_{t}}^{2}\mathrm{d}t\right\|:\partial_{t}\rho+\mathsf{div}(\rho\nabla\psi)=0\right.,
$$
\n
$$
\rho_{t=0}=\rho_{0}\,,\quad\rho_{t=1}=\rho_{1}\right\}.
$$

 \bullet If $t \mapsto \rho_t$ is smooth, the continuity equation

 $\partial_t \rho + \text{div}(\rho \Psi) = 0$

holds for some velocity vector field $\Psi(t, x)$.

- For a.e. t, \exists a unique gradient $\Psi_t = \nabla \psi_t$ solving cont.eq.
- Regard $\nabla\psi_t$ as "tangent vector" at $\rho_t.$
- For $\rho \in \mathcal{P}(\mathbf{R}^n)$, define an inner product by

$$
\langle \nabla \varphi, \nabla \psi \rangle_{\rho} = \int_{\mathbf{R}^n} \langle \nabla \varphi(x), \nabla \psi(x) \rangle \rho(x) dx.
$$

Associated Riemannian distance (Benamou-Brenier formula)

$$
W_2(\rho_0, \rho_1)^2 = \inf_{\rho, \psi} \left\{ \int_0^1 \|\nabla \psi_t\|_{\rho_t}^2 dt \; : \partial_t \rho + \text{div}(\rho \nabla \psi) = 0 \right\},
$$

$$
\rho_{t=0} = \rho_0 \,, \quad \rho_{t=1} = \rho_1 \right\}.
$$

Benamou-Brenier formula in \mathbb{R}^n

$$
W_2^2(\rho_0, \rho_1) = \inf_{\rho, \psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \, \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t \right\}
$$
\n
$$
\text{s.t.} \quad \partial_t \rho + \text{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \, .
$$

Benamou-Brenier formula in \mathbb{R}^n

$$
W_2^2(\rho_0, \rho_1) = \inf_{\rho, \psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \, \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t \right\}
$$
\n
$$
\text{s.t.} \quad \partial_t \rho + \text{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \ .
$$

 \mathcal{L}

Definition in the discrete case (M. 2011)

 $\mathcal{W}(\rho_0,\rho_1)^2$ $:= \inf_{\rho,\psi} \left\{$

Benamou-Brenier formula in \mathbb{R}^n

$$
W_2^2(\rho_0, \rho_1) = \inf_{\rho, \psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \, \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t \right\}
$$
\n
$$
\text{s.t.} \quad \partial_t \rho + \text{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \ .
$$

Definition in the discrete case (M. 2011)

$$
\mathcal{W}(\rho_0,\rho_1)^2 \\ := \inf_{\rho,\psi} \Biggl\{ \int_0^1
$$

 $\left\{\mathrm{d}t\right\}$

Benamou-Brenier formula in \mathbb{R}^n

$$
W_2^2(\rho_0, \rho_1) = \inf_{\rho, \psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \, \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t \right\}
$$
\n
$$
\text{s.t.} \quad \partial_t \rho + \text{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \ .
$$

Definition in the discrete case (M. 2011)

$$
\mathcal{W}(\rho_0,\rho_1)^2\\ :=\inf_{\rho,\psi}\bigg\{\frac{1}{2}\int_0^1\sum_{\mathsf{x},\mathsf{y}\in\mathcal{X}}
$$

$$
K(x,y)\pi(x)\,\mathrm{d}t\bigg\}
$$

Benamou-Brenier formula in \mathbb{R}^n

$$
W_2^2(\rho_0, \rho_1) = \inf_{\rho, \psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \, \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t \right\}
$$
\n
$$
\text{s.t.} \quad \partial_t \rho + \text{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \, .
$$

Definition in the discrete case (M. 2011)

$$
\mathcal{W}(\rho_0, \rho_1)^2 = \inf_{\rho, \psi} \left\{ \frac{1}{2} \int_0^1 \sum_{x, y \in \mathcal{X}} (\psi_t(x) - \psi_t(y))^2 \right. \qquad \mathcal{K}(x, y) \pi(x) dt \right\}
$$

Benamou-Brenier formula in \mathbb{R}^n

$$
W_2^2(\rho_0, \rho_1) = \inf_{\rho, \psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \, \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t \right\}
$$
\n
$$
\text{s.t.} \quad \partial_t \rho + \text{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \, .
$$

Definition in the discrete case (M. 2011)

$$
\mathcal{W}(\rho_0, \rho_1)^2 = \inf_{\rho, \psi} \left\{ \frac{1}{2} \int_0^1 \sum_{x, y \in \mathcal{X}} (\psi_t(x) - \psi_t(y))^2 \right. \qquad \mathcal{K}(x, y) \pi(x) dt \right\}
$$

s.t.

Problem: ρ is defined on vertices, $\nabla \psi$ is defined on edges \rightarrow No canonical way to define the product $\rho \cdot \nabla \psi$!

Benamou-Brenier formula in \mathbb{R}^n

$$
W_2^2(\rho_0, \rho_1) = \inf_{\rho, \psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \, \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t \right\}
$$
\n
$$
\text{s.t.} \quad \partial_t \rho + \text{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \, .
$$

Definition in the discrete case (M. 2011)

$$
\mathcal{W}(\rho_0, \rho_1)^2 = \inf_{\rho, \psi} \left\{ \frac{1}{2} \int_0^1 \sum_{x, y \in \mathcal{X}} (\psi_t(x) - \psi_t(y))^2 \right. \qquad \mathcal{K}(x, y) \pi(x) dt \right\}
$$

s.t.

Use the *logarithmic mean* as the "density on an edge"!

$$
\hat{\rho}(x,y) := \int_0^1 \rho(x)^{1-\alpha} \rho(y)^{\alpha} d\alpha = \frac{\rho(x) - \rho(y)}{\log \rho(x) - \log \rho(y)}
$$
Definition of the metric W

Benamou-Brenier formula in \mathbb{R}^n

$$
W_2^2(\rho_0, \rho_1) = \inf_{\rho, \psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \, \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t \right\}
$$
\n
$$
\text{s.t.} \quad \partial_t \rho + \text{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \, .
$$

Definition in the discrete case (M. 2011)

$$
\mathcal{W}(\rho_0, \rho_1)^2 = \inf_{\rho, \psi} \left\{ \frac{1}{2} \int_0^1 \sum_{x, y \in \mathcal{X}} (\psi_t(x) - \psi_t(y))^2 \hat{\rho}_t(x, y) K(x, y) \pi(x) dt \right\}
$$

s.t.

Use the *logarithmic mean* as the "density on an edge"!

$$
\hat{\rho}(x,y) := \int_0^1 \rho(x)^{1-\alpha} \rho(y)^{\alpha} d\alpha = \frac{\rho(x) - \rho(y)}{\log \rho(x) - \log \rho(y)}
$$

Definition of the metric W

Benamou-Brenier formula in \mathbb{R}^n

$$
W_2^2(\rho_0, \rho_1) = \inf_{\rho, \psi} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \, \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t \right\}
$$
\n
$$
\text{s.t.} \quad \partial_t \rho + \text{div}(\rho \nabla \psi) = 0 \text{ and } \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1 \ .
$$

Definition in the discrete case (M. 2011)

$$
\mathcal{W}(\rho_0, \rho_1)^2
$$
\n
$$
:= \inf_{\rho, \psi} \left\{ \frac{1}{2} \int_0^1 \sum_{x, y \in \mathcal{X}} (\psi_t(x) - \psi_t(y))^2 \hat{\rho}_t(x, y) K(x, y) \pi(x) dt \right\}
$$
\n
$$
\text{s.t.} \quad \frac{d}{dt} \rho_t(x) + \sum_{y \in \mathcal{X}} \hat{\rho}_t(x, y) (\psi_t(x) - \psi_t(y)) K(x, y) = 0 \qquad \forall x
$$

Use the *logarithmic mean* as the "density on an edge"!

$$
\hat{\rho}(x,y) := \int_0^1 \rho(x)^{1-\alpha} \rho(y)^{\alpha} d\alpha = \frac{\rho(x) - \rho(y)}{\log \rho(x) - \log \rho(y)}
$$

Basic properties of W (M. '11)

• W defines a metric on $P(X)$.

Basic properties of W (M. '11)

- W defines a metric on $P(X)$.
- W is induced by a Riemannian structure on $P_{>0}(X)$.

Basic properties of W (M. '11)

- W defines a metric on $P(X)$.
- W is induced by a Riemannian structure on $\mathcal{P}_{>0}(\mathcal{X})$.
- The tangent space at ρ is the set of discrete gradients with

$$
\|\nabla\psi\|_{\rho}^2=\frac{1}{2}\sum_{x,y\in\mathcal{X}}\big(\psi(x)-\psi(y)\big)^2\hat{\rho}(x,y)K(x,y)\pi(x).
$$

Basic properties of W (M. '11)

- W defines a metric on $\mathcal{P}(\mathcal{X})$.
- W is induced by a Riemannian structure on $\mathcal{P}_{>0}(\mathcal{X})$.
- The tangent space at ρ is the set of discrete gradients with

$$
\|\nabla\psi\|_{\rho}^2=\frac{1}{2}\sum_{x,y\in\mathcal{X}}\big(\psi(x)-\psi(y)\big)^2\hat{\rho}(x,y)K(x,y)\pi(x).
$$

Theorem [Discrete JKO] (M. '11)

The heat flow is the gradient flow of the entropy w.r.t. W .

Basic properties of W (M. '11)

- W defines a metric on $P(X)$.
- W is induced by a Riemannian structure on $\mathcal{P}_{>0}(\mathcal{X})$.
- The tangent space at ρ is the set of discrete gradients with

$$
\|\nabla\psi\|_{\rho}^2=\frac{1}{2}\sum_{x,y\in\mathcal{X}}\big(\psi(x)-\psi(y)\big)^2\hat{\rho}(x,y)K(x,y)\pi(x).
$$

Theorem [Discrete JKO] (M. '11)

The heat flow is the gradient flow of the entropy w.r.t. W .

Independent works by Chow–Huang–Li–Zhou '12 and Mielke '11.

Why the logarithmic mean?

Formal proof of the JKO-Theorem

1. If (ρ_t, ψ_t) satisfy the cont. eq. $\partial_t \rho + \text{div}(\rho \nabla \psi) = 0$, then

$$
\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Ent}(\rho_t) = -\langle \log \rho_t, \mathrm{div}(\rho_t \nabla \psi_t) \rangle = \langle \nabla \log \rho_t, \rho_t \nabla \psi_t \rangle.
$$

$$
\longrightarrow \quad \text{grad}_{W_2} \operatorname{Ent}(\rho) = \nabla \log \rho
$$

Why the logarithmic mean?

Formal proof of the JKO-Theorem

1. If (ρ_t, ψ_t) satisfy the cont. eq. $\partial_t \rho + \text{div}(\rho \nabla \psi) = 0$, then

$$
\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Ent}(\rho_t) = -\langle \log \rho_t, \mathrm{div}(\rho_t \nabla \psi_t) \rangle = \langle \nabla \log \rho_t, \rho_t \nabla \psi_t \rangle.
$$

$$
\longrightarrow ~~\text{grad}_{W_2}\operatorname{Ent}(\rho)=\nabla \log \rho
$$

2. If ρ_t solves the heat equation in \mathbf{R}^n , then

$$
\partial_t \rho = \text{div}(\nabla \rho) = - \text{div}(\rho \nabla \psi) .
$$

provided $\psi = -\log \rho$. \longrightarrow Tangent vector along the heat flow is $-\nabla \log \rho$.

Why the logarithmic mean?

Formal proof of the JKO-Theorem

1. If (ρ_t, ψ_t) satisfy the cont. eq. $\partial_t \rho + \text{div}(\rho \nabla \psi) = 0$, then

$$
\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Ent}(\rho_t) = -\langle \log \rho_t, \mathrm{div}(\rho_t \nabla \psi_t) \rangle = \langle \nabla \log \rho_t, \rho_t \nabla \psi_t \rangle.
$$

$$
\longrightarrow ~~\text{grad}_{W_2}\operatorname{Ent}(\rho)=\nabla \log \rho
$$

2. If ρ_t solves the heat equation in \mathbf{R}^n , then

$$
\partial_t \rho = \text{div}(\nabla \rho) = - \text{div}(\rho \nabla \psi) .
$$

provided $\psi = -\log \rho$. \longrightarrow Tangent vector along the heat flow is $-\nabla \log \rho$.

Logarithmic mean compensates for the lack of a discrete chain rule:

$$
\rho(x) - \rho(y) = \hat{\rho}(x, y) (\log \rho(x) - \log \rho(y))
$$

Ricci curvature of Markov chains

Discrete analogue of Lott–Sturm–Villani:

Definition (ERBAR, M. 2012)

We say that (X, K, π) has Ricci curvature bounded from below by $\kappa \in \mathbf{R}$ if the entropy is κ -convex along geodesics in $(\mathcal{P}(\mathcal{X}), \mathcal{W})$.

• Let (X, K, π) be a reversible Markov chain.

- Let (X, K, π) be a reversible Markov chain.
- Discrete analogue of the Fisher information

$$
\mathcal{I}(\rho) = \frac{1}{2} \sum_{x,y} \left(\rho(x) - \rho(y) \right) \left(\log \rho(x) - \log \rho(y) \right) K(x,y) \pi(x)
$$

- Let (X, K, π) be a reversible Markov chain.
- Discrete analogue of the Fisher information

$$
\mathcal{I}(\rho) = \frac{1}{2} \sum_{x,y} \left(\rho(x) - \rho(y) \right) \left(\log \rho(x) - \log \rho(y) \right) K(x,y) \pi(x)
$$

Discrete Bakry-Émery Theorem ($_{\text{ERBAR},\text{M}}$. '12)

If Ric(K) $\geq \kappa > 0$, then the modified log-Sobolev inequality holds:

$$
\mathsf{Ent}(\rho) \le \frac{1}{2\kappa} \mathcal{I}(\rho) \qquad (\mathsf{mLSI}(\kappa))
$$

for all $\rho \in \mathcal{P}_{>0}(\mathcal{X})$.

- Let (X, K, π) be a reversible Markov chain.
- Discrete analogue of the Fisher information

$$
\mathcal{I}(\rho) = \frac{1}{2} \sum_{x,y} \left(\rho(x) - \rho(y) \right) \left(\log \rho(x) - \log \rho(y) \right) K(x,y) \pi(x)
$$

Discrete Bakry-Émery Theorem ($_{\text{ERBAR},\text{M}}$. '12)

If Ric(K) $\geq \kappa > 0$, then the modified log-Sobolev inequality holds:

$$
\mathsf{Ent}(\rho) \le \frac{1}{2\kappa} \mathcal{I}(\rho) \qquad (\mathsf{mLSI}(\kappa))
$$

for all $\rho \in \mathcal{P}_{>0}(\mathcal{X})$.

• mLSI(κ) has been extensively studied in discrete settings (Bobkov–Tetali '06, . . .)

- Let (X, K, π) be a reversible Markov chain.
- Discrete analogue of the Fisher information

$$
\mathcal{I}(\rho) = \frac{1}{2} \sum_{x,y} \left(\rho(x) - \rho(y) \right) \left(\log \rho(x) - \log \rho(y) \right) K(x,y) \pi(x)
$$

Discrete Bakry-Émery Theorem ($_{\text{ERBAR},\text{M}}$. '12)

If Ric(K) \geq κ $>$ 0, then the modified log-Sobolev inequality holds:

$$
\mathsf{Ent}(\rho) \le \frac{1}{2\kappa} \mathcal{I}(\rho) \qquad (\mathsf{mLSI}(\kappa))
$$

for all $\rho \in \mathcal{P}_{>0}(\mathcal{X})$.

- mLSI(κ) has been extensively studied in discrete settings (Bobkov–Tetali '06, . . .)
- mLSI(κ) is equivalent to the exponential decay estimate

$$
Ent(P_t \rho) \leq e^{-2\kappa t} Ent(\rho).
$$

Let (X, K, π) be a reversible Markov chain. Let $\kappa > 0$.

Discrete Otto-Villani Theorem (ERBAR, M. '12)

If mLSI(κ) holds, then the modified Talagrand inequality holds, i.e.,

$$
\mathcal{W}(\rho, 1)^2 \leq \frac{2}{\kappa} \operatorname{Ent}(\rho) \,. \tag{mTal(\kappa)}
$$

Let (X, K, π) be a reversible Markov chain. Let $\kappa > 0$.

Discrete Otto-Villani Theorem (ERBAR, M. '12)

If mLSI(κ) holds, then the modified Talagrand inequality holds, i.e.,

$$
\mathcal{W}(\rho, 1)^2 \leq \frac{2}{\kappa} \operatorname{Ent}(\rho) \,. \tag{mTal(\kappa)}
$$

The analogous inequality with W_2 never holds in discrete settings!

Let (X, K, π) be a reversible Markov chain. Let $\kappa > 0$.

Discrete Otto-Villani Theorem (ERBAR, M. '12)

If mLSI(κ) holds, then the modified Talagrand inequality holds, i.e.,

$$
\mathcal{W}(\rho, 1)^2 \leq \frac{2}{\kappa} \operatorname{Ent}(\rho) \,. \tag{mTal(\kappa)}
$$

The analogous inequality with W_2 never holds in discrete settings!

If mTal (κ) holds, then

• the Poincaré inequality holds:

$$
\sum_{x} \psi(x)^2 \pi(x) \le \frac{1}{2\kappa} \sum_{x,y} (\psi(x) - \psi(y))^2 K(x,y) \pi(x)
$$

whenever $\sum_{x} \psi(x) \pi(x) = 0$.

Let (X, K, π) be a reversible Markov chain. Let $\kappa > 0$.

Discrete Otto-Villani Theorem (ERBAR, M. '12)

If mLSI(κ) holds, then the modified Talagrand inequality holds, i.e.,

$$
\mathcal{W}(\rho, 1)^2 \leq \frac{2}{\kappa} \operatorname{Ent}(\rho) \,. \tag{mTal(\kappa)}
$$

The analogous inequality with W_2 never holds in discrete settings!

If mTal (κ) holds, then

• the Poincaré inequality holds:

$$
\sum_{x} \psi(x)^2 \pi(x) \leq \frac{1}{2\kappa} \sum_{x,y} (\psi(x) - \psi(y))^2 K(x,y) \pi(x)
$$

whenever $\sum_{x}\psi(x)\pi(x) = 0$.

• the \mathcal{T}_1 -inequality holds: $W_1(\rho,1)^2 \leq \frac{1}{\kappa}$ $\frac{1}{\kappa}$ Ent (ρ) .

Theorem (Mielke 2012)

• For every finite reversible Markov chain: $\exists \kappa \in \mathbf{R}$ such that $Ric(K) \geq \kappa$.

Theorem (Mielke 2012)

- For every finite reversible Markov chain: $\exists \kappa \in \mathbf{R}$ such that $Ric(K) \geq \kappa$.
- Finite volume discretisations of Fokker-Planck equations in 1D.

Theorem (Mielke 2012)

- For every finite reversible Markov chain: $\exists \kappa \in \mathbf{R}$ such that $Ric(K) > \kappa$.
- Finite volume discretisations of Fokker-Planck equations in 1D.

Theorem (Erbar, M. 2012)

Let $(\mathcal{X}_i, \mathcal{K}_i, \pi_i)$ be reversible finite Markov chains and let $(\mathcal{X}, \mathcal{K}, \pi)$ be the product chain. Then:

$$
\mathrm{Ric}(\mathcal{X}_i,K_i,\pi_i)\geq\kappa_i\qquad\Longrightarrow\qquad\mathrm{Ric}(\mathcal{X},K,\pi)\geq\frac{1}{n}\min_i\kappa_i
$$

Theorem (Mielke 2012)

- For every finite reversible Markov chain: $\exists \kappa \in \mathbf{R}$ such that $Ric(K) > \kappa$.
- Finite volume discretisations of Fokker-Planck equations in 1D.

Theorem (Erbar, M. 2012)

Let $(\mathcal{X}_i, \mathcal{K}_i, \pi_i)$ be reversible finite Markov chains and let $(\mathcal{X}, \mathcal{K}, \pi)$ be the product chain. Then:

$$
\mathrm{Ric}(\mathcal{X}_i,K_i,\pi_i)\geq\kappa_i\qquad\Longrightarrow\qquad\mathrm{Ric}(\mathcal{X},K,\pi)\geq\frac{1}{n}\min_i\kappa_i
$$

• Dimension-independent bounds

Theorem (Mielke 2012)

- For every finite reversible Markov chain: $\exists \kappa \in \mathbf{R}$ such that $Ric(K) > \kappa$.
- Finite volume discretisations of Fokker-Planck equations in 1D.

Theorem (Erbar, M. 2012)

Let $(\mathcal{X}_i, \mathcal{K}_i, \pi_i)$ be reversible finite Markov chains and let $(\mathcal{X}, \mathcal{K}, \pi)$ be the product chain. Then:

$$
\mathrm{Ric}(\mathcal{X}_i,K_i,\pi_i)\geq\kappa_i\qquad\Longrightarrow\qquad\mathrm{Ric}(\mathcal{X},K,\pi)\geq\frac{1}{n}\min_i\kappa_i
$$

• Dimension-independent bounds

• Sharp bounds for the discrete hypercube $\{-1,1\}^n$

- Let $T_N^d = (Z/NZ)^d$ be the discrete torus.
- Let W_N be the normalised transportation metric for simple random walk on $\mathsf{T}_{N}^{d}.$

- Let $T_N^d = (Z/NZ)^d$ be the discrete torus.
- Let W_N be the normalised transportation metric for simple random walk on $\mathsf{T}_{N}^{d}.$

Theorem (Gigli, M. 2012)

 $(\mathcal{P}(\mathsf{T}^d_N),\mathcal{W}_N) \to (\mathcal{P}(\mathsf{T}^d),\mathcal{W}_2)$ in the sense of Gromov–Hausdorff.

- Let $T_N^d = (Z/NZ)^d$ be the discrete torus.
- Let W_N be the normalised transportation metric for simple random walk on $\mathsf{T}_{N}^{d}.$

Theorem (Gigli, M. 2012)

 $(\mathcal{P}(\mathsf{T}^d_N),\mathcal{W}_N) \to (\mathcal{P}(\mathsf{T}^d),\mathcal{W}_2)$ in the sense of Gromov–Hausdorff.

• Compatibility between W_2 and W .

- Let $T_N^d = (Z/NZ)^d$ be the discrete torus.
- Let W_N be the normalised transportation metric for simple random walk on $\mathsf{T}_{N}^{d}.$

Theorem (Gigli, M. 2012)

 $(\mathcal{P}(\mathsf{T}^d_N),\mathcal{W}_N) \to (\mathcal{P}(\mathsf{T}^d),\mathcal{W}_2)$ in the sense of Gromov–Hausdorff.

- Compatibility between W_2 and W .
- Main ingredient for proving convergence of gradient flows.

Further developments

Further developments

Closely related gradient flow structures have been discovered for

• Systems of chemical reactions (Mielke) non-linear generalisation of continuous time Markov chains

Further developments

- Systems of chemical reactions (Mielke) non-linear generalisation of continuous time Markov chains
- Non-local equations on general state spaces (Erbar) fractional heat equations

- Systems of chemical reactions (Mielke) non-linear generalisation of continuous time Markov chains
- Non-local equations on general state spaces (Erbar) fractional heat equations
- Discrete porous medium equations (Erbar-M.) allows for structure-preserving discretisations of PDEs

- Systems of chemical reactions (Mielke) non-linear generalisation of continuous time Markov chains
- Non-local equations on general state spaces (Erbar) fractional heat equations
- Discrete porous medium equations (Erbar-M.) allows for structure-preserving discretisations of PDEs
- Dissipative quantum mechanics (Carlen-M., Mielke) non-commutative analogue of W for density matrices

Thank you!