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Starting point

McCann ’94: beautiful connection between

• Boltzmann-Shannon entropy

• 2-Wasserstein metric from optimal transport

Relative entropy

Let m be a reference measure on X .

For µ ∈ P(X ): Entm(µ) =


∫
X
ρ(x) log ρ(x) dm(x), dµ

dm = ρ,

+∞, otherwise.
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Optimal transport and entropy

The optimal transport problem (with quadratic cost)

Let (X , d) be a Polish space and let µ, ν ∈ P(X ).

Definition of the 2-Wasserstein metric

W2(µ, ν)2 := inf

{∫
X×X

d(x , y)2 dγ(x , y) :

γ with marginals µ and ν

}
= inf

{
E[d(X ,Y )2] : law(X ) = µ, law(Y ) = ν

}
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Let (X , d) be a Polish space and let µ, ν ∈ P(X ).

Definition of the 2-Wasserstein metric
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Properties

• W2 defines a metric on P2(X ).

• (X , d) is a geodesic space⇒ (P2(X ),W2) is a geodesic space.



Optimal transport and entropy

Theorem (McCann ’94)

The entropy is convex along geodesics in (P2(Rn),W2).

Construction of geodesics in the 2-Wasserstein space P2(Rn)

• Let γ be an optimal coupling of µ and ν

• If µ is a.c., then γ is supported on the graph of a function
Ψ : Rn → Rn (by Brenier’s Theorem).

• For t ∈ [0, 1], set Ψt(x) := (1− t)x + tΨ(x).

• Let µt be the image measure of µ under Ψt .

• Then: (µt) is a constant speed geodesic from µ to ν.

Highly non-linear interpolation based on geometry of the underlying
space!
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Theorem (Otto–Villani ’00, Cordero–McCann–

Schmuckenschläger ’01, von Renesse–Sturm ’05)

For a Riemannian manifold M, TFAE:

1. Displacement κ-convexity of the entropy:

Ent(µt) ≤ (1− t)Ent(µ0) + tEnt(µ1)

− κ

2
t(1− t)W 2

2 (µ0, µ1)

for all 2-Wasserstein geodesics (µt)t∈[0,1];

2. Ric ≥ κ everywhere on M.

Entropy
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Optimal transport and Ricci curvature II

Definition (Sturm ’06, Lott–Villani ’09)

A metric measure space (X , d ,m) satisfies Ric(X ) ≥ κ if

Ent(µt) ≤ (1− t) Ent(µ0) + t Ent(µ1)− κ

2
t(1− t)W 2

2 (µ0, µ1)

along all W2-geodesics (µt)t∈[0,1] in P(X ).

Crucial features

• Applicable to a wide class of metric measure spaces

• Many geometric, analytic and probabilistic consequences

−→ logarithmic Sobolev, Talagrand, Poincaré inequalities;
Brunn-Minkowski.

• Stability under measured Gromov–Hausdorff convergence

But..... what about discrete spaces?
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What about discrete spaces?

Example: 2-point space X = {0, 1}.

• Set µα := (1− α)δ0 + αδ1 for α ∈ [0, 1]. Then:

W2(µα, µβ) =
√
|α− β| .

• Suppose that
(
µα(t)

)
is a constant speed geodesic. Then:

√
|α(t)− α(s)| = W2(µα(t), µα(s)) = c|t − s| .

−→ (α(t)) is 2-Hölder, hence constant.

• Thus: there are no non-trivial W2-geodesics. In fact:

(P2(X ),W2) is a geodesic space ⇔ (X , d) is a geodesic space.

Conclusion: LSV-Definition does not apply to discrete spaces.
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−→ (α(t)) is 2-Hölder, hence constant.

• Thus: there are no non-trivial W2-geodesics. In fact:

(P2(X ),W2) is a geodesic space ⇔ (X , d) is a geodesic space.

Conclusion: LSV-Definition does not apply to discrete spaces.



What about discrete spaces?

Example: 2-point space X = {0, 1}.
• Set µα := (1− α)δ0 + αδ1 for α ∈ [0, 1]. Then:

W2(µα, µβ) =
√
|α− β| .

• Suppose that
(
µα(t)

)
is a constant speed geodesic. Then:

√
|α(t)− α(s)| =

W2(µα(t), µα(s)) = c|t − s| .

−→ (α(t)) is 2-Hölder, hence constant.

• Thus: there are no non-trivial W2-geodesics. In fact:

(P2(X ),W2) is a geodesic space ⇔ (X , d) is a geodesic space.

Conclusion: LSV-Definition does not apply to discrete spaces.



What about discrete spaces?

Example: 2-point space X = {0, 1}.
• Set µα := (1− α)δ0 + αδ1 for α ∈ [0, 1]. Then:

W2(µα, µβ) =
√
|α− β| .

• Suppose that
(
µα(t)

)
is a constant speed geodesic. Then:√

|α(t)− α(s)| = W2(µα(t), µα(s)) = c|t − s| .
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Ricci curvature of discrete spaces

Many approaches to discrete Ricci curvature:

• W1-contraction à la Dobrushin
Ollivier (’09); Sammer (’05), Joulin (’09), Jost, Bauer, Hua,
Liu (’11-. . . )

• approximate W2-geodesics
Bonciocat, Sturm (’09), Ollivier, Villani (’12)

• modified Bakry-Émery criterion
Lin, Lu, S.-T. Yau (’11-. . . ), Bauer, Horn, Lin, Lippner,
Mangoubi, S.-T. Yau (’13)

• discrete displacement interpolation
Gozlan, Roberto, Samson, Tetali (’12) [see next lecture!],
Hillion (’12)

Our goal: Find a notion of discrete Ricci curvature

• in the spirit of Lott-Sturm-Villani

• which allows to prove sharp functional inequalities.
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Why 2-Wasserstein?

Theorem [Jordan–Kinderlehrer–Otto ’98]

The heat flow is the gradient flow of the entropy w.r.t W2

, i.e.,

∂tµ = ∆µ ⇐⇒ 1

2

d

dt
W2(µt , ν)2 ≤ Ent(ν)− Ent(µt) ∀ν .

How to make sense of gradient flows in metric spaces?
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1. u solves the gradient flow equation u′(t) = −∇ϕ(u(t)) .

2. u solves the evolution variational inequality

1
2

d
dt |u(t)− y |2 ≤ ϕ(y)− ϕ(u(t)) ∀y .

(De Giorgi ’93, Ambrosio–Gigli–Savaré ’05)



Heat flow as gradient flow of the entropy

Many extensions have been proved:

• Rn Jordan–Kinderlehrer–Otto
• Riemannian manifolds Villani, Erbar
• Hilbert spaces Ambrosio–Savaré–Zambotti
• Finsler spaces Ohta–Sturm
• Wiener space Fang–Shao–Sturm
• Heisenberg group Juillet
• Alexandrov spaces Gigli–Kuwada–Ohta
• Metric measures spaces Ambrosio–Gigli–Savaré

Question

Is there a version of the JKO-Theorem for discrete
spaces?
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Discrete setting

Setting

• X : finite set

• K : X × X → R+ Markov kernel, ∀x :
∑

y K (x , y) = 1

• π: reversible measure, ∀x , y : K (x , y)π(x) = K (y , x)π(y)

Heat flow

• Discrete Laplacian: ∆ψ(x) :=
∑

y K (x , y)(ψ(y)− ψ(x))

• Continuous time Markov semigroup: Pt = et∆

Relative Entropy

• P(X ) :=
{
ρ : X → R+ |

∑
x∈X ρ(x)π(x) = 1

}
,

• Ent(ρ) :=
∑
x∈X

ρ(x) log ρ(x)π(x), ρ ∈ P(X ) .
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Simplest non-trivial example: 2-point space

X = {0, 1} K (0, 1) = K (1, 0) = 1 π(0) = π(1) = 1
2

Recall the notation: µα = (1− α)δ0 + αδ1.

Proposition [M. 2011]

The heat flow is the gradient flow of Ent w.r.t. the metricW, where

W(µα, µβ) :=
√

2

∫ β

α

√
arctanh(2r − 1)

2r − 1
dr , 0 ≤ α ≤ β ≤ 1.

How to generalise this to the general discrete case?
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Back to Rn: W2 as Riemannian metric (Otto ’01)

• If t 7→ ρt is smooth, the continuity equation

∂tρ+ div(ρΨ) = 0

holds for some velocity vector field Ψ(t, x).

• For a.e. t, ∃ a unique gradient Ψt = ∇ψt solving cont.eq.

• Regard ∇ψt as “tangent vector”at ρt .

• For ρ ∈ P(Rn), define an inner product by

〈∇ϕ,∇ψ〉ρ =

∫
Rn

〈∇ϕ(x),∇ψ(x)〉ρ(x)dx .
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Definition of the metric W
Benamou-Brenier formula in Rn

W 2
2 (ρ0, ρ1) = inf

ρ,ψ

{∫ 1

0

∫
Rn

|∇ψt(x)|2 ρt(x) dx dt

}
s.t. ∂tρ+div(ρ∇ψ) = 0 and ρt=0 = ρ0, ρt=1 = ρ1 .

Definition in the discrete case (M. 2011)

W(ρ0, ρ1)2

:=

inf
ρ,ψ

{
1

2

∫ 1

0

∑
x ,y∈X

(ψt(x)− ψt(y))2ρ̂t(x , y)K (x , y)π(x)dt

}

s.t.
d

dt
ρt(x) +

∑
y∈X

ρ̂t(x , y)(ψt(x)− ψt(y))K (x , y) = 0 ∀x

Use the logarithmic mean as the “density on an edge”!

ρ̂(x , y) :=

∫ 1

0
ρ(x)1−αρ(y)α dα =

ρ(x)− ρ(y)

log ρ(x)− log ρ(y)
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Results

Basic properties of W (M. ’11)

• W defines a metric on P(X ).

• W is induced by a Riemannian structure on P>0(X ).

• The tangent space at ρ is the set of discrete gradients with

‖∇ψ‖2
ρ =

1

2

∑
x ,y∈X

(
ψ(x)− ψ(y)

)2
ρ̂(x , y)K (x , y)π(x) .

Theorem [Discrete JKO] (M. ’11)

The heat flow is the gradient flow of the entropy w.r.t. W.

Independent works by Chow–Huang–Li–Zhou ’12 and Mielke ’11.
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Why the logarithmic mean?

Formal proof of the JKO-Theorem

1. If (ρt , ψt) satisfy the cont. eq. ∂tρ+ div(ρ∇ψ) = 0, then

d

dt
Ent(ρt) = −〈log ρt , div(ρt∇ψt)〉 = 〈∇ log ρt , ρt∇ψt〉 .

−→ gradW2
Ent(ρ) = ∇ log ρ

2. If ρt solves the heat equation in Rn, then

∂tρ = div(∇ρ) = − div(ρ∇ψ) .

provided ψ = − log ρ.
−→ Tangent vector along the heat flow is −∇ log ρ.

Logarithmic mean compensates for the lack of a discrete chain rule:

ρ(x)− ρ(y) = ρ̂(x , y)
(

log ρ(x)− log ρ(y)
)
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Ricci curvature of Markov chains

Discrete analogue of Lott–Sturm–Villani:

Definition (Erbar, M. 2012)

We say that (X ,K , π) has Ricci curvature bounded from below by
κ ∈ R if the entropy is κ-convex along geodesics in (P(X ),W).

Ent

ϱ0

ϱ1/2

ϱ1

P(X)



Consequences: Sharp functional inequalities I

• Let (X ,K , π) be a reversible Markov chain.

• Discrete analogue of the Fisher information

I(ρ) =
1

2

∑
x ,y

(ρ(x)− ρ(y)) (log ρ(x)− log ρ(y))K (x , y)π(x)

Discrete Bakry-Émery Theorem (Erbar, M. ’12)

If Ric(K ) ≥ κ > 0, then the modified log-Sobolev inequality holds:

Ent(ρ) ≤ 1

2κ
I(ρ) (mLSI(κ))

for all ρ ∈ P>0(X ).

• mLSI(κ) has been extensively studied in discrete settings
(Bobkov–Tetali ’06, . . . )

• mLSI(κ) is equivalent to the exponential decay estimate

Ent(Ptρ) ≤ e−2κt Ent(ρ).



Consequences: Sharp functional inequalities I

• Let (X ,K , π) be a reversible Markov chain.
• Discrete analogue of the Fisher information

I(ρ) =
1

2

∑
x ,y

(ρ(x)− ρ(y)) (log ρ(x)− log ρ(y))K (x , y)π(x)
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Consequences: Sharp functional inequalities II

Let (X ,K , π) be a reversible Markov chain. Let κ > 0.

Discrete Otto-Villani Theorem (Erbar, M. ’12)

If mLSI(κ) holds, then the modified Talagrand inequality holds, i.e.,

W(ρ, 1)2 ≤ 2

κ
Ent(ρ) . (mTal(κ))

The analogous inequality with W2 never holds in discrete settings!

If mTal(κ) holds, then

• the Poincaré inequality holds:∑
x

ψ(x)2π(x) ≤ 1

2κ

∑
x ,y

(ψ(x)− ψ(y))2K (x , y)π(x)

whenever
∑

x ψ(x)π(x) = 0.

• the T1-inequality holds: W1(ρ, 1)2 ≤ 1
κ Ent(ρ) .
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• the Poincaré inequality holds:∑
x

ψ(x)2π(x) ≤ 1

2κ

∑
x ,y

(ψ(x)− ψ(y))2K (x , y)π(x)

whenever
∑

x ψ(x)π(x) = 0.

• the T1-inequality holds: W1(ρ, 1)2 ≤ 1
κ Ent(ρ) .



Consequences: Sharp functional inequalities II

Let (X ,K , π) be a reversible Markov chain. Let κ > 0.

Discrete Otto-Villani Theorem (Erbar, M. ’12)

If mLSI(κ) holds, then the modified Talagrand inequality holds, i.e.,

W(ρ, 1)2 ≤ 2

κ
Ent(ρ) . (mTal(κ))

The analogous inequality with W2 never holds in discrete settings!

If mTal(κ) holds, then
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Ricci bounds: examples

Theorem (Mielke 2012)

• For every finite reversible Markov chain: ∃κ ∈ R such that
Ric(K ) ≥ κ.

• Finite volume discretisations of Fokker-Planck equations in
1D.

Theorem (Erbar, M. 2012)

Let (Xi ,Ki , πi ) be reversible finite Markov chains and let (X ,K , π)
be the product chain. Then:

Ric(Xi ,Ki , πi ) ≥ κi =⇒ Ric(X ,K , π) ≥ 1

n
min
i
κi

• Dimension-independent bounds

• Sharp bounds for the discrete hypercube {−1, 1}n
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Gromov-Hausdorff convergence

• Let Td
N = (Z/NZ)d be the discrete torus.

• Let WN be the normalised transportation metric for simple
random walk on Td

N .

Theorem (Gigli, M. 2012)

(P(Td
N),WN)→ (P(Td),W2) in the sense of Gromov–Hausdorff.

• Compatibility between W2 and W.

• Main ingredient for proving convergence of gradient flows.
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Further developments

Closely related gradient flow structures have been discovered for

• Systems of chemical reactions (Mielke)
non-linear generalisation of continuous time Markov chains

• Non-local equations on general state spaces (Erbar)
fractional heat equations

• Discrete porous medium equations (Erbar-M.)
allows for structure-preserving discretisations of PDEs

• Dissipative quantum mechanics (Carlen-M., Mielke)
non-commutative analogue of W for density matrices
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Thank you!


