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Discrete cube - notation

[n] := {1, 2, . . . , n}

Discrete cube (hypercube) Cn := {−1, 1}n, equipped with the
normalized counting (uniform probability) measure (1

2δ−1 + 1
2δ1)⊗n

Expectation of f : Cn −→ R is thus given by

E[f ] = 2−n
∑
x∈Cn

f (x).

Lp-norm: ‖f ‖p = (E[|f |p])1/p for p ≥ 1.
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L2-structure

Scalar product: For f , g : Cn −→ R let

〈f , g〉 = E[f · g ] = 2−n ·
∑
x∈Cn

f (x)g(x).

Note that 〈f , f 〉 = ‖f ‖22.

Hilbert space:

Hn := L2(Cn,R); dimHn = 2n
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Walsh system

Walsh functions: For x ∈ {−1, 1}n and A ⊆ [n] let

wA(x) =
∏
i∈A

xi ,

w∅ ≡ 1

ri := wi = w{i} - i-th coordinate projection (i ∈ [n])

r1, r2, . . . , rn - a Rademacher sequence:
independent symmetric ±1 Bernoulli random variables
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Orthonormality

E[wA] = 0 for A 6= ∅, and E[w∅] = 1

Indeed, expectation of the product of independent random variables
is equal to the product of their expectations (and they are all equal
to zero).

Orthonormality: wA · wB = wA∆B thus

〈wA,wB〉 = E[wA∆B ] = δA,B

Here ∆ denotes a symmetric set difference (XOR) while δA,B = 1
if A = B and δA,B = 0 if A 6= B (Kronecker’s delta).

Example: w{1,2} · w{2,3} = r1r2 · r2r3 = r1r22 r3 = r1r3.
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Walsh-Fourier expansion

The Walsh functions (wA)A⊆[n] form an orthonormal system of
cardinality 2n, which is equal to the linear dimension of Hn. Thus
the system is complete and every f ∈ Hn admits the unique
Walsh-Fourier expansion:

f =
∑

A⊆[n]

f̂ (A)wA,

with coefficients given by

f̂ (A) = 〈f ,wA〉 = E[f · wA].
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Question

Let N ≥ 2 and let us denote by VN the linear span of
(wA)A⊆[n]:|A|>N .

Problem (R. Bogucki, P. Nayar, M. Wojciechowski):
Let S : {−1, 1}n → R be defined by S = r1 + r2 + . . .+ rn.
Estimate distL1(S ,VN).

There is distL1(S ,VN) ' min(N,
√
n).

Actually, for S =
∑n

i=1 ai ri there is

distL1(S ,VN) ≤ CN ·max
i
|ai |,

and even some more precise estimates are available. However, in
this presentation we will deal with the problem in its original form.
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Main result

Theorem
There exists a universal κ > 0 such that for any integers N ≥ 2
and n ≥ 1 there is a function f : {−1, 1}n → R with E[|f |] ≤ κN
and such that f̂ ({i}) = 1 for 1 ≤ i ≤ n, and f̂ (A) = 0 for all
A ⊆ {1, 2, . . . , n} of cardinality 0, 2, 3, 4, . . . ,N.

Moreover, the O(N) bound is of optimal order. For N = 2 one can
even find f satisfying the above conditions and such that E[|f |] = 1.
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Proof of the bound

Proof: For N = 2 it suffices to consider the function
f = 1

2
∏n

i=1(1 + ri )− 1
2
∏n

i=1(1− ri ). Obviously, E[|f |] = 1.
No better bound can be hoped for since E[fri ] = 1 implies
E[|f |] ≥ 1.

For general N ≥ 2 let us consider a function of Fejér type:

ψN(x) =
N∑

k=1

k sin kx +
N∑

k=1

(N − k) sin(N + k)x ,

or, equivalently, ψN(x) = sinNx · sin2(Nx/2)/ sin2(x/2).

For some universal constants κ1, κ2 > 0 we have |ψN(x)| ≤ κ1N2

on [−1/N, 1/N] and |ψN(x)| ≤ κ2/x2 for |x | > 1/N.

Thus 1
π

∫ π
−π |ψN(x)| dx ≤ κN.
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Proof of the bound - the end

Recall that we have ψN(x) = sinNx · sin2(Nx/2)/ sin2(x/2)
and 1

π

∫ π
−π |ψN(x)| dx ≤ κN.

One easily checks that
∫ π
−π ψN(x) sin x dx = π,

∫ π
−π ψN(x) dx = 0,

and
∫ π
−π ψN(x) sinm x dx = 0 for 2 ≤ m ≤ N (for even m this is

obvious and for odd m one can use simple induction on m,
expressing sinmx as a polynomial in sin x).

Choosing f (x) defined by the formula

1
π

∫ π

−π
ψN(x)

n∏
i=1

(1+ri sin x) dx =
∑

A⊆[n]

1
π

∫ π

−π
ψN(x) sin|A| x dx ·wA,

we end the proof.
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Optimality

Now we will prove that in general the linear order of the estimate
cannot be improved:

There exists a universal constant η > 0 with the following property.
For every N ≥ 2 and every function f : {−1, 1}N2 → R such that
f̂ ({i}) = 1 for 1 ≤ i ≤ N2 and f̂ (A) = 0 for all A ⊆ {1, 2, . . . ,N2}
of cardinality 0, 2, 3, 4, . . . ,N there is E[|f |] ≥ ηN.
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Proof of optimality

Let

WN(t) =

[ N−1
2 ]∑

k=0

(−1)kt2k+1

(2k + 1)!
, RN(t) =

∞∑
[ N+1

2 ]

(−1)kt2k+1

(2k + 1)!
.

Obviously, WN(t) +RN(t) = sin t and for t ∈ [−N/6,N/6] we have

|RN(t)| ≤
∞∑

[ N+1
2 ]

(e/6)2k+1 ≤ 2−N ,

since m! ≥ (m/e)m. Hence |WN(t)| ≤ 2 for |t| ≤ N/6. Thus

2E[|f |] ≥ EfWN

 1
6N

N2∑
i=1

ri

 = E

 N2∑
i=1

ri

WN

 1
6N

N2∑
i=1

ri

 .
Indeed, degWN ≤ N, so that WN( 1

6N
∑N2

i=1 ri ) is a Walsh-Fourier
chaos of order not exceeding N.
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Proof of optimality - the end

On the other hand,

E

 N2∑
i=1

ri

WN

 1
6N

N2∑
i=1

ri

 =

E

 N2∑
i=1

ri

 sin

 1
6N

N2∑
i=1

ri

− E

 N2∑
i=1

ri

RN

 1
6N

N2∑
i=1

ri


≥ N2Er1 sin

 1
6N

N2∑
i=1

ri

− 2−N · N2 =

N2 sin
(

1
6N

)
cosN

2−1
(

1
6N

)
− 2−N · N2 ∼ N.
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The case of n < N2

The preceding proof can be easily modified to cover the case
n ≥ N2 instead of n = N2.

The lower bound in the case n < N2 follows - indeed, let N ′ denote
the integer part of

√
n, so that n ≥ N ′2. Then we have N ′ ≤ N and

thus VN ⊆ VN′ , so that

distL1(S ,VN) ≥ distL1(S ,VN′) ≥ ηN ′ '
√
n.

Note that we have also a trivial upper bound

distL1(S ,VN) ≤ E[|S |] ≤
(
E[S2]

)1/2
=
√
n.

This ends the proof of the distL1(S ,VN) ' min(N,
√
n) estimate.
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On some extensions of the FKN theorem

The classical theorem of Friedgut, Kalai and Naor (2002), re-proved
and extended by Kindler and Safra (2002), states that there exists
a universal positive constant C such that for any positive integer n
and any f : {−1, 1}n → {−1, 1} we have

E[(f − g)2] ≤ C ·
∑

A⊆[n]:|A|≥2

(
f̂ (A)

)2

for some g of the form rk , −rk (for some k ∈ [n]), 1, or −1.

We will discuss several new extensions to this theorem obtained
in a joint paper with J. Jendrej and J. O. Wojtaszczyk, to appear
in Theory of Computing soon (hopefully).
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Main trick

Step 1 ([FKN]): Instead of the Boolean f defined on the discrete
cube {−1, 1}n (or, more generally, some product probability space),
consider its orthogonal projection to the linear subspace of affine
functions. On the discrete cube it reads as∑

A⊆[n]:|A|≤1

f̂ (A)wA = a0 + a1r1 + . . .+ anrn.

Step 2: Prove an appropriate lemma of the following form. Let X
and Y be independent. If their sum X + Y is "concentrated" then
at least one of the variables X ,Y is *concentrated* (in a different
sense).

Example: min(Var(X ),Var(Y )) ≤ C ·Var(|X + Y |).
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Reduction from n to two summands

Step 3: For a sum S of independent X1,X2, . . . ,Xn, deduce from
Step 2 a lemma of the following form. If S is "concentrated" then
there exists k ∈ [n] such that S − Xk is *concentrated*. Do it in
the following way.

For I ⊆ [n] let SI =
∑

i∈I Xi . Choose a minimal I such that SI is
not *concentrated*. This implies, in particular, that I is nonempty.
Choose any k ∈ I . Use Step 2 for X = SI , Y = S[n]\I : S = X + Y
is "concentrated" and, by the choice of I , the summand X is not
*concentrated*, so that Y = S[n]\I must be *concentrated*. Also,
SI\{k} is *concentrated* because of the minimality of I . Thus
S[n]\{k} = S[n]\I + SI\{k} is *concentrated* as well.

Potential for extensions and modifications: for example
"concentrated" may be replaced by "small", and instead of sums
one may consider maxima, etc.
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Symmetric case

Let X and Y be independent square-integrable random variables, at
least one of them symmetric. Then

min
(
Var(X ),Var(Y )

)
≤ 7 +

√
17

4
·Var(|X + Y |).

Let (Xi )
n
i=1 be a sequence of independent symmetric random

variables. Then for some k ∈ {1, 2, . . . , n} we have

Var
( ∑

i≤n:i 6=k

Xi

)
≤ C · inf

x∈R
Var
(∣∣∣x +

∑
i≤n

Xi

∣∣∣),
where C is a universal constant.

The result holds true with C = (7 +
√
17)/2 ≈ 5.56. A simple

example of n = 3 and X1, X2, X3 i.i.d. symmetric ±1 random
variables indicates that the constant C cannot be less than
8/3 ≈ 2.67 (it suffices to check it for x = 0).

K. Oleszkiewicz Mimicking & FKN



Symmetric case

Let X and Y be independent square-integrable random variables, at
least one of them symmetric. Then

min
(
Var(X ),Var(Y )

)
≤ 7 +

√
17

4
·Var(|X + Y |).

Let (Xi )
n
i=1 be a sequence of independent symmetric random

variables. Then for some k ∈ {1, 2, . . . , n} we have

Var
( ∑

i≤n:i 6=k

Xi

)
≤ C · inf

x∈R
Var
(∣∣∣x +

∑
i≤n

Xi

∣∣∣),
where C is a universal constant.

The result holds true with C = (7 +
√
17)/2 ≈ 5.56. A simple

example of n = 3 and X1, X2, X3 i.i.d. symmetric ±1 random
variables indicates that the constant C cannot be less than
8/3 ≈ 2.67 (it suffices to check it for x = 0).

K. Oleszkiewicz Mimicking & FKN



Symmetric case

Let X and Y be independent square-integrable random variables, at
least one of them symmetric. Then

min
(
Var(X ),Var(Y )

)
≤ 7 +

√
17

4
·Var(|X + Y |).

Let (Xi )
n
i=1 be a sequence of independent symmetric random

variables. Then for some k ∈ {1, 2, . . . , n} we have

Var
( ∑

i≤n:i 6=k

Xi

)
≤ C · inf

x∈R
Var
(∣∣∣x +

∑
i≤n

Xi

∣∣∣),
where C is a universal constant.

The result holds true with C = (7 +
√
17)/2 ≈ 5.56. A simple

example of n = 3 and X1, X2, X3 i.i.d. symmetric ±1 random
variables indicates that the constant C cannot be less than
8/3 ≈ 2.67 (it suffices to check it for x = 0).

K. Oleszkiewicz Mimicking & FKN



FKN theorem

The result from the preceding slide contains the FKN theorem, with
a reasonable constant, as its special case. Actually, by using a less
elementary method, specific to the case of the discrete cube, we
were able to further improve the bounds in the FKN theorem
(independently an analogous strengthening was obtained by Ryan
O’Donnell).
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Extension

Let X and Y be independent square-integrable random variables.
Assume E(|X + Y | − 1)2 ≤ ρ2 for some ρ ∈ (0, 1]. Then
Var(X ) ≤ 25ρ or Var(Y ) ≤ 25ρ.

Let X1,X2, . . . ,Xn be independent square-integrable random
variables and let S =

∑n
i=1 Xi . Assume E(|S | − 1)2 ≤ ρ2 for some

ρ ∈ (0, 1]. Then there exists some k ∈ [n] such that

Var(S − Xk) ≤ 50ρ.

The O(ρ) order of the bound cannot be improved in general. If we,
however, take into account an additional parameter Var(S) then
one can easily strengthen the estimate.
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Rubinstein-type variant

Let X and Y be independent square-integrable random variables.
Assume E(|X + Y | − 1)2 ≤ ρ2 for some ρ ∈ (0, 1]. Then
Var(X ) ≤ Cρ2/Var(X + Y ) or Var(Y ) ≤ Cρ2/Var(X + Y ), where
C is a universal positive constant.

Let X1,X2, . . . ,Xn be independent square-integrable random
variables and let S =

∑n
i=1 Xi . Assume E(|S | − 1)2 ≤ ρ2 for some

ρ ∈ (0, 1]. Then there exists some k ∈ [n] such that
Var(S − Xk) ≤ Kρ2/Var(S), with a universal K > 0.

This Rubinstein-type bound immediately implies the estimate from
the preceding slide (unsurprisingly, taking into account an
additional parameter adds some precision). The new two-variable
lemma has essentially the same proof as the old one.

Aviad Rubinstein, Boolean functions whose Fourier transform is
concentrated on pair-wise disjoint subsets of the inputs, MSc
Thesis, Tel-Aviv University, 2012
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Structural theorem

Let ε, δ > 0. Let A be a finite subset of a separable Banach space
V , with |A| ≥ 2, such that ‖x − y‖ ≥ 3|A|ε for any distinct
x , y ∈ A. Let ξ1, . . . , ξn be independent V -valued random vectors
and S =

∑n
i=1 ξi . Assume that P(dist(S ,A) > ε) ≤ δ. For I ⊆ [n]

let SI =
∑

i∈I ξi . Then there exists a nonnegative integer k < |A|
and {i1, . . . , ik} ⊆ [n] such that for some v ∈ V

P
(∥∥S[n]\{i1,...,ik} − v

∥∥ > |A|ε) ≤ |A|2δ1/|A|
for some v ∈ V .

Moreover, if V is a Hilbert space and k > 0 then there exist vectors
v1, . . . ,vk ∈ V and nonempty sets B1, . . . ,Bk ⊆ A with∑k

m=1(|Bm| − 1) < |A| such that

P (dist(ξim , vm + Bm) > ε) ≤ 2|A|δ1/(|A|−1)

for every m ∈ [k].
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Geometric problem

For a general Banach space V a slightly weaker result holds true.
Its proof goes via essential reduction to a 2|A|-dimensional linear
subspace and use of F. John’s theorem therein to deduce the
general case from the result in Hilbert spaces.

We will say that a subset of a metric space is ∆-separated if it does
not contain a pair of distinct points whose distance is less than ∆.

Question: Let A and B be finite 1-separated subsets of a normed
linear space. Does it imply that there exists C ⊆ A + B with
|C | ≥ |A|+ |B| − 1 which is also 1-separated?

True in Hilbert spaces.
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