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The setting

Given a set A, take the Euclidean space

`2 � `2pAq :�  
x P CA :

¸
αPA

|xpαq|2   8(
,

equipped with the usual dot product

xx,yy :�
¸
αPA

xpαqypαq, x P `2, y P `2, (1)

and the resulting Euclidean norm

}x}2 :�
a
xx,xy �

�¸
αPA

|xpαq|2
� 1

2

, x P `2.

Let B`2 denote the closed unit ball,

B`2 :�  
x P `2 : }x}2 ¤ 1

(
.



A generic presentation of `2pAq

Take a sufficiently ”large” σ-finite measure space pΩ, µq, and
consider the Hilbert space

L2pΩ, µq �  
f P L0pΩq :

»
Ω
|f |2dµ   8(

, (2)

where L0pΩq is the space of C-valued measurable functions on Ω,
with inner product

xf ,gyL2 �
»
Ω

f g dµ, f P L2pΩ, µq, g P L2pΩ, µq. (3)

Select an orthonormal family of functions

F � tfαuαPA � L2pΩ, µq,
and define

U : `2pAq Ñ L2pΩ, µq (4)

by
Ux �

¸
αPA

xpαqfα, x P `2pAq. (5)



Parseval’s formula

Then,

xx,yy �
»
Ω

Ux Uy dµ �
»
Ω

Ux Uy dµ

:� xUx,UyyL2 , x P `2pAq, y P `2pAq,
(6)

i.e., U is a unitary map: a one-one, ”angle” preserving linear map
from the Euclidean space `2pAq onto

L2
F :� L2-closure of the span of tfαuαPA.

Note: U is automatically continuous...

The relation in (6) is called Parseval’s formula, specifically in a
harmonic-analytic framework, and sometimes also Parseval’s identity,
usually in more general contexts.



Beyond square-integrability, what more can be said
about the ”size” of functions in L2

F?

That depends on the choice of the orthonormal system

F � tfα : α P Au � L2pΩ, µq.

If F is complete, then the answer is: nothing.

But if F is ”thin” – in some sense opposite to ”complete” – then we
can expect improved integrability...



Harmonic analysis on dyadic groups

ΩA � t�1,1uA, a compact Abelian group with Haar measure PA.

Take the Rademacher system RA :� trα : α P Au,

rαpωq � ωpαq, ω P ΩA, α P A (Rademacher characters),

and adjoin to it r0 � 1 on ΩA. The dual group of ΩA is

pΩA � WA �
8¤

k�0

WA,k (Walsh characters), (7)

where WA,0 � tr0u, and for k P N,

WA,k �
"¹
αPF

rα : F � A, |F | � k
*

(Walsh characters of order k ).

WA is a basis for L2pΩA,PAq, whereas RA is a ”basis” for WA.



We take the canonical unitary equivalence between `2pAq and L2
RA

,

x Ñ Ux �
¸
αPA

xpαqrα, x P `2pAq, Ux P L2
RA
. (8)

Theorem 1 (Khintchin, 1924)

PA
�|Ux| ¥ t

� ¤ expp�t2{2q, x P B`2 , t ¡ 0, (9)

which is optimal: 2 cannot be replaced by a larger exponent.

Question. Can we do better with other representations of `2pAq?

E.g., are there probability spaces pΩ, µq, and continuous injections

Φ : `2pAq Ñ L2pΩ, µq, such that

}Φpxq}L8 ¤ K , x P B`2 , and¸
αPA

xpαqypαq �
»
Ω

ΦpxqΦpyq dµ, x P `2pAq, y P `2pAq?



The Grothendieck inequality

There exists 1   K   8, such that for every finite scalar array pajk q,

sup
"��¸

j,k

ajkxxj ,yky
�� : xj ,yk P B`2

*
¤ K sup

"��¸
j,k

ajksj tk
�� : sj , tk P r�1,1s

*
.

An equivalent assertion had appeared in Grothendieck’s 1953
Resumé, and remained unnoticed until its reformulation above in
[Lindenstrauss and Pelczynski,1968]. Since its reformulation, known
as the Grothendieck inequality, it has been applied in functional,
harmonic, and stochastic analysis, and recently also in theoretical
physics and theoretical computer science. (See [Pisier, 2012].)

The evaluation of the ”smallest” K , denoted by KG and dubbed the
Grothendieck constant, is an open problem. For the latest on it, see
[Braverman et al., 2011].



The dual statement

Take ΩB
`2
� t�1,1uB

`2 , and RB
`2
� trx : x P B`2u.

Proposition 1
The Grothendieck inequality holds ô there exists a complex
measure λ P M

�
ΩB

`2
� ΩB

`2

�
, such that for all x P B`2 , y P B`2 ,

xx,yy �
»
ΩB

`2
�ΩB

`2

rxpω1qrypω2qλpdω1,dω2q � pλprx b ryq,

The Grothendieck constant KG is the minimum of }λ}M over all
representations of the dot product by pλ P �MpΩB

`2
� ΩB

`2
q�^.



A Parseval-like formula

Corollary 2
The Grothendieck inequality holds ô if there exist a probability
measure µ on Ω :� ΩB

`2
� ΩB

`2
, and a one-one map

Φ : `2pAq Ñ L2pΩ, µq, (10)

such that
}Φpxq}L8 ¤ K }x}2, (11)

and
xx,yy �

»
Ω

ΦpxqΦpyqdµ, x P `2pAq, y P `2pAq. (12)

Proof.
”Polarize” the mappings supplied by Proposition 1.



Still a question...

In the Parseval-like formula – the assertion equivalent to the
Grothendieck inequality – the underlying measurable space Ω is
huge(!), the probability measure µ is non-constructible, and the
injection Φ is nowhere continuous (with respect to the norm as well
as the weak topologies).

Is there a more tractable, ”standard” probability space pΩ, µq, along
with a constructible continuous injection

Φ : `2pAq Ñ L2pΩ, µq,

such that
}Φpxq}L8 ¤ K }x}2, x P `2pAq, (13)

and
xx,yy �

»
Ω

ΦpxqΦpyqdµ, x P `2pAq, y P `2pAq? (14)



The L1
RA

ãÑ L2 - Khintchin inequality

Theorem 3 (Littlewood, 1930)

sup
"}f }L2pΩA,PAq
}f }L1pΩA,PAq

: f P L2
RA
, f � 0

*
:� κA ¤

?
6 (15)

Note
κA   8 ô L1

RA
� L2

RA
, (16)

where L1
RA

is the L1pΩA,PAq-closure of the linear span of RA.

The assertion in (15), with various upper estimates for the Khintchin
constant

κ :� sup
A
κA,

had been proved nearly a century ago, independently, by Littlewood,
Orlicz, Steinhaus, and Zygmund. That κ �

?
2 was proved by Szarek

in his 1976 Master’s thesis.



The dual statement

Restated as
pL2

RA
q� � pL1

RA
q�,

the Khintchin inequality becomes the assertion (via Hahn-Banach,
Riesz, and Parseval)

`2pAq � �
L8pΩA,PAq

�^��
RA
.

That is, there exists a mapping

G � U � g : `2pAq Ñ L8pΩA,PAq, (17)

where
Ux �

¸
αPA

xpαqrα, gpxq P L2
WAzRA

,

and
}Gpxq}L8 ¤

?
2}x}2, x P `2pAq. (18)

(We refer to G as an interpolant, and to g as the orthogonal
perturbation associated with it.)



Khintchin falls short

The Khintchin inequality guarantees the existence of an interpolant,

G : `2pAq Ñ L8pΩA,PAq,

such that �
Gpxq�^prαq � xpαq, x P `2pAq, α P A, (19)

but does not guarantee its continuity, and that

xx,yy �
»
ΩA

GpxqGpyqdPA. x P `2pAq, y P `2pAq. (20)

Indeed, we have (via Parseval)

xx,yy �
»
ΩA

GpxqGpyqdPA �
»
ΩA

gpxqgpyqdPA, (21)

but have no assurance that the second term on the right side of (21)
vanishes.



But, an idea...

The application of Parseval’s formula,»
ΩA

GpxqGpyqdPA �
¸
αPA

zGpxqprαqzGpyqprαq � »
ΩA

gpxqgpyqdPA

»
ΩA

GpxqGpyqdPA � xx,yy �
»
ΩA

gpxqgpyqdPA,

(22)

suggests a recursive scheme:

The right side of (22) equals

xx,yy � ”error”, (23)

where the ”error” is a dot product of of two vectors in `2pWAzRAq.
Apply the interpolant G to each of these two vectors, apply
Parseval’s formula again, subtract the result from (22), and repeat...



An iteration?

Assume A is infinite. Then, A and WAzRA have the same
cardinality, and we fix a bijection

τ : A Ñ WAzRA. (24)

Given x P `2pAq, define xpjq P `2pAq recursively:

xp1q � x,

xpjq � �
gpxpj�1qq�^ � τ, j ¥ 2.

(25)

Then, by an iteration of Parseval’s formula, we formally(!) have

xx,yy �
8̧

j�1

p�1qj�1
»
ΩA

GpxpjqqGpypjqqdPA. (26)



Uniformizability?

To guarantee convergence of the iteration, say, via a geometric series
argument, we need the L2-norm of the perturbation gpxq, x P B`2pAq,
to be uniformly below 1.

Note: κ �
?

2 (= the Khintchin constant) implies, via the triangle
inequality,

}gpxq}L2 ¤ 1, x P B`2pAq, (27)

and no better...

Question. Is there an interpolant G with an orthogonal perturbation
g, such that

}gpxq}L2 ¤ δ   1, }Gpxq}L8 ¤ upδq   8, x P B`2pAq? (28)

We call such an interpolant G a uniformizing interpolant.



Uniformizing constants

Making matters precise, for δ ¡ 0 and x P B`2pAq, we let

uApx; δq � inf
"�� ¸

αPA

xpαqrα � gpxq��L8 : gpxq P �L2
RA

�K
, }gpxq}L2 ¤ δ

*
,

uApδq � sup
 
uApx; δq : x P B`2pAq

(
,

and
upδq � sup

A
uApδq.

We refer to upδq, δ ¡ 0, as uniformizing constants (associated with
the Rademacher system).

Problem. Compute upδq, δ ¡ 0.

Whereas up1q �
?

2 is immediate from κ �
?

2 (the Khintchin
constant), it is not obvious that upδq is finite for 0   δ   1.



Continuity?

The dual formulation of the (L1 � L2)-Khintchin inequality guarantees
existence of an interpolant, via the axiom of choice (Hahn-Banach,
etc.), and implies nothing more.

Question. Can Gpxq, x P `2pAq, be chosen continuously with
respect to the `2pAq-norm (on its domain) and the L2pΩA,PAq-norm
(on its range), and continuously also with respect to the weak
topologies on its domain and range?

Answers to both questions (uniformizability and continuity) are
affirmative. Both are obtained through the use of Riesz products.



Riesz products

Define the Riesz product

RApxq �
¹
αPA

�
r0 � xpαqrα

�
, x P CA, (29)

to be the formal Walsh series

RApxq �
8̧

k�1

� ¸
tα1,...,αku�A

xpα1q � � �xpαk qrα1 � � � rαk



. (30)

Basic question.
What does the Walsh series in (30) represent?



An L8-valued Riesz product

Define
QApxq :� Im RApixq,

where i � ?�1, and Im denotes the imaginary part.

Then,

QApxq �
8̧

k�1

p�1qk�1
� ¸
tα1,...,α2k�1u�A

xpα1q � � �xpα2k�1qrα1 � � � rα2k�1



.

Key Lemma

If x P `2RpAq (= Real Euclidean space), then QApxq is the Walsh
series of an element in L8pΩA,PAq, and

}QApxq}L8 ¤ e
}x}22

2 ; (31)



Key Lemma continued

for all u ¡ 0, �
uQApx{uq

�^prαq � xpαq, α P A, (32)

and
}�uQApx{uq

�^|W zRA
}2 ¤ u

b
sinhp}x{u}2

2q � }x{u}2. (33)

Moreover, For x P `2RpAq, y P `2RpAq,

}QApxq �QApyq}L2pΩA,PAq ¤
b

2 coshp2ρ2q }x� y}2, (34)

where ρ � maxt}x}2, }y}2u.



Sketch of proof

To verify that QApxq P L8pΩA,PAq, take

finite F � spect
�
QApxq

�
,

and estimate

��QApxq
��

L8 ¤ ��¹
αPF

�
r0 � ixpαqrα

���
L8 �

�¹
αPF

�
1� |xpαq|2�
 1

2

� e
1
2
°
αPF logp1�|xpαq|2q

¤ e
}x}22

2 .

(35)

Now take a sequence of finite sets
�
Fk

�
increasing to spect

�
QApxq

�
,

and verify that QFk pxq converges in weak*-L8 to QApxq with the
norm bound in (35).



Proof continued...

For every u ¡ 0,

uQApx{uq �

� u
8̧

k�1

p�1qk�1
�

1
u2k�1

¸
tα1,...,α2k�1u�A

xpα1q � � �xpα2k�1qrα1 � � � rα2k�1




�
¸
αPA

xpαqrα

�
8̧

k�1

p�1qk�1
�

1
u2k

¸
tα1,...,α2k�1u�A

xpα1q � � �xpα2k�1qrα1 � � � rα2k�1



,

(36)

which verifies that
�
uQApx{uq

�^ interpolates x on RA.



uQAp�{uq uniformizes and is Lipschitz...

To verify the `2-bound on
�
uQApx{uq

�^��
WAzRA

, we estimate

¸
tα1,...,α2k�1u�A

|xpα1q � � �xpα2k�1q|2 ¤ 1
p2k � 1q!

� ¸
αPA

|xpαq|2

2k�1

,

and then,

}�uQApx{uq
�^|WAzRA

}2 ¤ u

� 8̧

k�2

}x{u}2p2k�1q
2

p2k � 1q!

� 1
2

� u
b

sinhp}x{u}2
2q � }x{u}2.

That QA : `2RpAq Ñ L2pΩA,PAq is a Lipschitz function follows from
estimates...



Therefore...

Corollary

The uniformizing constants upδq are O
�

1?
δ



, 0   δ   1.

In particular, QA : `2RpAq Ñ L2pΩA,PAq is a uniformizing interpolant
with

δ �
a

sinhp1q � 1   1,

and is norm-continuous as well as weakly continuous.

Returning to Grothendieck, we can now implement the iteration:

Assume A is infinite, and then let tAj : j P Nu be a partition of A,
such that each Aj has the same cardinality as A.

Then, for every j P N, Aj�1 and WAj zRAj also have the same
cardinality, and we fix bijections

τ1 : A1 Ñ A, τj : Aj Ñ WAj�1zRAj�1 , j ¥ 2. (37)



An iteration

Write QAj � Uj � gj . Given x P `2RpAq, define xpjq P `2pAjq
recursively:

xp1q � x � τ1,

xpjq � �
gj�1pxpj�1qq�^ � τj , j ¥ 2.

(38)

Then, by an iteration of Parseval’s formula, we have

xx,yy �
8̧

j�1

p�δ2qj�1
»
ΩA

QAj pxpjq{δj�1qQAj pypjq{δj�1qdPA, x,y P B`2RpAq,

which converges!

Because the Aj are disjoint, the QAj are independent, and therefore,

xx,yy �
»
ΩA

� 8̧

j�1

p�δqj�1QAj pxpjq{δj�1q

� 8̧

j�1

δj�1QAj pypjq{δj�1q



dPA.

(39)



A Parseval-like formula

Define

ΦApxq �
8̧

j�1

piδqj�1QAj pxpjq{δj�1q, x P B`2RpAq, (40)

and let ΦApxq � ΦApuq � iΦApvq, for x � u� iv, u,v P B`2RpAq.

Theorem 4
The map

ΦA : B`2pAq Ñ L8pΩA,PAq
is a uniformly bounded injection that is (`2 Ñ L2)-continuous, as well
as (weak-`2 Ñ weak*-L8)-continuous. Moreover,

}ΦApxq}L8 ¤ K , x P B`2pAq, (41)

where K ¡ 1 is a universal constant independent of A, and

xx,yy �
»
ΩA

ΦApxqΦApyqdPA, x, y P B`2pAq. (42)



A word of caution

The map ΦA (or any other map with the same properties) does not
commute with complex conjugation. In particular, 

ΦApxq : x P B`2RpAq
(

must contain elements with non-zero imaginary parts.

Indeed, by [Kashin and Szarek, 2003], for every N ¡ 0 there exist
vectors v1, . . . ,vN P B`2pAq, such that if f1, . . . , fN P L8pΩA,PAq, and

xvj ,vky �
»
ΩA

fj fk dPA, 1 ¤ j   k ¤ N, (43)

then
}fj}L8 ¥ K plogNq 1

4 , j � 1, . . . ,N, (44)

where K ¡ 0 is a universal constant.



Constants?

Let
}ΦA}8,L8 � sup

 }ΦApxq}L8 : x P B`2pAq
(
,

where ΦA is the injection in Theorem 4, and let

KGC � sup
A

inf
ΦA

�}ΦA}8,L8
�2
,

where infimum is taken over all continuous injections

ΦA : B`2pAq Ñ L8pΩ, µq

that satisfy Theorem 4, with pΩ, µq in place of pΩA,PAq.
Then,

KG (= the Grothendieck constant) ¤ KGC .

Question.
KG   KGC ?



Thank you.


