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Optimization? 
•  Goes	back	to	many	classical	ideas		

in	mathema-cs	and	physics		
(Fermat,	Newton,	Euler…)	

•  Varia-onal	principles	(least-ac-on,		
Hamilton,	Euler-Lagrange,		
calculus	of	varia-ons,	etc)	

•  More	recently,	convexity	and	complexity	
(Farkas,	Minkowski,	Caratheodory,		
Kantorovich,	Dantzig,	Khachiyan,	Karmarkar…)	

•  Strong	links	with	game	theory,		
control	theory,	combinatorics,	TCS,	etc…	

Dido’s problem 
(Virgil’s Aeneid) 

Brachistochrone 
(Bernoulli, 1696)  



Op6miza6on	is	ubiquitous	
•  Op-miza-on	is	essen-al	across	many	scien-fic	and	
engineering	applica-ons	(signal	processing,	robo-cs,	
VLSI,	machine	learning,	mechanical	design,	revenue	
management,	...)	

•  ORen,	defines	what	an	“acceptable	solu-on”	is	
•  Enables	whole	industries:		

–  Airlines:	jet	engine	design,	CFD,	route	planning,	fare	
pricing,	crew/plane	scheduling,	maintenance,	…	

–  Finance	and	insurance:	trading,	deriva-ves,	sta-s-cal	
modeling	and	op-miza-on,	...	

–  E-commerce:	combinatorial	auc-ons,	ad	campaign	design,	
recommenda-on	systems,	…			



Many	flavors	
	
Demand	for	increasingly		
sophis-cated	mathema-cal		
op-miza-on	methods:	
	
•  From	1950s	on:	linear	programming,	nonlinear,	global,	

convex,	quadra-c,	semidefinite,	hyperbolic,	etc.	
•  Combinatorial,	network,	packing/covering,	integer,	

submodular,	etc.	

Mathema-cal	infrastructure	and	associated	computa-onal	
methods	for	engineering	and	scien-fic	applica-ons.	

(NEOS server) 



The convexity watershed 

"...in	fact,	the	great	watershed	in	op-miza-on	
isn't	between	linearity	and	nonlinearity,	but	
convexity	and	nonconvexity.”		(p.	185)	
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Sets:	
	

Func-ons:		

Convex	 Non-convex	
	

Sets	

	

Func6ons	

Convexity 

x, y 2 S ) �x+ (1� �)y 2 S 8� 2 [0, 1]

f(�x+ (1� �)y)  �f(x) + (1� �)f(y)



Why Convexity? 

•  Simple,	but	rich,	geometric	structure	
•  Principled,	modular	modeling	approach	(e.g.,	
Boyd’s	“disciplined	convex	programming”)	

•  Predictable	algorithmic	behavior	
•  Efficient	in	theory	(polynomial	-me)	
•  Remarkably	effec-ve	in	prac-ce	
•  Many	successful	applica-ons	



Actually, many watersheds… 

•  Convex	vs.	Nonconvex	
•  Linear	vs.	Nonlinear	
•  Con-nuous	vs.	Discrete	
•  Constrained	vs.	Unconstrained	
•  …	
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(NEOS server) 



Actually, many watersheds… 

All	important,	and	relevant	in	suitable	contexts.	
	
•  S-ll,	how	much	of	op-miza-on	can	be	done	
while	bridging	these	dis-nc-ons?	

•  How	“real”	are	they?	Are	they	really	sharp?			
•  What	can	we	gain	(if	anything)	from	a	unified	
perspec-ve?	

Analogies:	linearity/curvature,	inver-bility/condi-on	numbers,	
complexity/parameterized	complexity,	etc.	
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Make things convex? 

	
Very	useful,	but		
-  Descrip-ons	may	be	hard	to	obtain	
-  May	lose	informa-on	about	points	in	interior	
	 11 

Convex Hull 

Convex Envelope 



Convexity is relative 
•  Every	set/problem	can	be	“liRed”	to	a	convex	sejng		

(in	general,	infinite	dimensional).	
	

•  Conceptually	easy:	a	new	dimension		
for	each	point	in	the	set!	

–  E.g.,		n-point	set		->	n-dimensional	simplex	
–  “con-nuous”	set		->	infinite-dimensional	space	
–  Not	the	same	thing	as	taking	convex	hull	(but	related)	
–  Nice	projec-on	of	extreme	points	

	
•  Many	examples/interpreta-ons:	probability	distribu-ons	over	a	

set,	func-onal	spaces,	mixed	strategies	in	games,	“relaxed”	
controls,	etc.	

•  Related	theme:	in	physics/control,	same	for	linear	vs.	non-linear:	
dynamics	can	always	be	linearized,	e.g.,	Liouville	equa-on).	
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Lifting 



So, is everything convex? 

Yeah,	but…	
Great	idea,	but	oRen	not	very	prac-cal	(as	such)	

	
	
Q:	Perhaps	we	can	get	away	with	finite		
					(or	small)	dimension??	
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Nice.	Do	you	have	anything	smaller?	

•  Interes-ngly,	however,	oRen	a	finite		
(and	small)	dimension	may	be	enough.		

•  Ex:	Consider	the	set	defined	by	
1	≤	x2	+	y2	≤	2		

•  Obviously	non-convex.	

•  Can	we	use	convex	op-miza-on?		
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Small	liMings	(some6mes)	work!	
•  A	polynomial	“liRing”	to	a	higher	dimensional	space:	

(x,y) ︎→(x,y,x2	+y2)		
•  The	original	nonconvex	set	is	the	projec-on	of	the	extreme	

points	of	a	convex	set.		
•  In	par-cular,	the	convex	set		

defined	by		
	

						x2	+	y2	≤	z,						1	≤	z	≤	4		
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Ascent	towards	convexity… 	

Want to understand and develop 
systematic and efficient lifting methods   
 
 
 
 

Lifted set 
(infinite dimensional) 

Convex hull 

Original (nonconvex) set 

Finite-dimensional 
(small) liftings 

 
Answer: Hierarchies of relaxations 
 



Found Comput Math (2012) 12:805–849 831

Fig. 3 A toy sketch illustrating
the cut polytope P and the two
approximations P1 and P2.
Note that P1 is a sketch of the
standard semidefinite relaxation
that has the same vertices as P .
On the other hand P2 is a
polyhedral approximation to P
that has many more vertices

Fig. 3. As expected the tangent cones at vertices of P become increasingly larger as
we use successively weaker relaxations. The following result summarizes the number
of random measurements required for recovering a cut matrix, i.e., a rank-one sign
matrix, using the norms induced by each of these convex bodies.

Proposition 4.3 Suppose x⋆ ∈ Rm×m is a rank-one sign matrix, i.e., a cut matrix,
and we are given n random Gaussian measurements of x⋆. We wish to recover x⋆ by
solving a convex program based on the norms induced by each of P , P1, P2. We have
exact recovery of x⋆ in each of these cases with high probability under the following
conditions on the number of measurements:

1. Using P : n = O(m).
2. Using P1: n = O(m).
3. Using P2: n = m2−m

4 .

Proof For the first part, we note that P is a symmetric polytope with 2m−1 vertices.
Therefore we can apply Corollary 3.14 to conclude that n = O(m) measurements
suffices for exact recovery.

For the second part we note that the tangent cone at x⋆ with respect to the nuclear
norm ball of m × m matrices contains within it the tangent cone at x⋆ with respect
to the polytope P1. Hence we appeal to Proposition 3.11 to conclude that n = O(m)

measurements suffices for exact recovery.
Finally, we note that P2 is essentially the hypercube in

(m
2

)
dimensions. Appealing

to Proposition 3.12, we conclude that n = m2−m
4 measurements suffices for exact

recovery. !

It is not too hard to show that these bounds are order-optimal, and that they cannot
be improved. Thus this particular instance rigorously demonstrates that the number
of measurements required for exact recovery increases as the relaxations get weaker
(and as the tangent cones get larger). The principle underlying this illustration holds
more generally, namely that there exists a tradeoff between the complexity of the
convex heuristic and the number of measurements required for exact or robust recov-
ery. It would be of interest to quantify this tradeoff in other settings, for example,
in problems in which we use increasingly tighter relaxations of the atomic norm via
theta bodies.

Hierarchies?	What’s	that?	
Long	history	in	op-miza-on:	
•  Integer	programming	(Chvatal-Gomory)	
•  Roof	duality	(Boros-Crama-Hammer)	
•  Reformula-on/lineariza-on	(Sherali-Adams)	
•  LiR-project	/	matrix	cuts	(Lovasz-Schrijver)	
•  Sum	of	squares	(Shor,	P.,	Lasserre)	

18 

Applicable	to	general	op-miza-on	problems	described	by	polynomial	
equa-ons	and	constraints.	

Yields	nice	convex	problems:	semidefinite	programs	(SDPs).	

 



Semidefinite	programming	(SDP)	
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A	broad	generaliza-on	of	LP	to	symmetric	matrices		

	

	

§  Intersec-on	of	affine	subspace	and		
cone	of	posi-ve	semidefinite	matrices	

§  Lots	of	applica-ons	

§  Originated	in	combinatorial	op-miza-on	and	control	theory.	
Nowadays,	used	everywhere.		

§  Convex,	finite	dimensional.	Nice	duality	theory	

§  Not	polyhedral,	solvable	in	polynomial	-me	



Hierarchies	of	relaxa6ons 		
Parameterized	families	of	maps,	with	two	proper-es:	

a)  Map	each	point	in	the	base	space,	to	a	point	“upstairs”		
	E.g.,	the	Veronese	embedding	

b)  But	(crucially!)	also	must	be	able	to	effec-vely	describe	
or	approximate	the	convex	hull	of	the	image.	

How?	Linear	func-ons	on	Symk	are	polynomials!		
	
	
Need	to	understand	polynomial	nonnega6vity…	 21 

� : V ! Symk(V ), x 7! x⌦ x⌦ · · ·⌦ x| {z }
k times

`(�(x)) = `(x⌦ · · ·⌦ x) =: p(x)



Convex	hulls	of	real	varie6es	
•  Need	to	“effec-vely”	understand	convex	hulls	
•  Many	levels:	

–  Geometrically	(e.g.,	facial	structure)	
–  Algebraically	(e.g.,	degrees,	equa-ons)	
–  Computa-onally	(e.g.,	SDP	relaxa-ons)	

•  Classical	ques-on	in	combinatorial	op-miza-on,	but	
con-nuous	aspect	adds	difficul-es	

Sanyal-Sottile-Sturmfels, “Orbitopes” 
Ranestad-Sturmfels, “Convex hull of a variety” 

Gouveia-Laurent-P.-Thomas, 
 “Theta bodies” Permutahedron 



Simplest	“nonlinear”	problem:	polynomial	nonnega-vity	
	
	
	
An	“obvious”	sufficient	condi-on:	SOS	
	
	
	
Surprisingly	powerful,	and	computable	via	SDP.	
		
Lots	of	consequences…	
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Sums	of	squares	(SOS)	

p(x) ≥ 0 ∀x ∈ Rn

∑
=

=
m

i
i xqxp

1

2 )()(

Trivial ! 



Back	to	hierarchies!	

Map	each	point	“upstairs”	via	

	
Replace	convex	hull	with	“SOS-convex	hull”,	where	we	only	look	
at	inequali-es	for	which		

•  Progressively	be=er	condi-ons	for	increasing	k	
•  For	every	fixed	k,	poly-me	solvable,	since	dim(Symk)	=	O(nk)	
•  Gives	a	complete	hierarchy,	as	k	->	infinity		

(under	mild	assump-ons,	details	omi=ed…)	
24 

� : V ! Symk(V ), x 7! x⌦ x⌦ · · ·⌦ x| {z }
k times

p`(x) = `(�(x)) is SOS
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approximations P1 and P2.
Note that P1 is a sketch of the
standard semidefinite relaxation
that has the same vertices as P .
On the other hand P2 is a
polyhedral approximation to P
that has many more vertices

Fig. 3. As expected the tangent cones at vertices of P become increasingly larger as
we use successively weaker relaxations. The following result summarizes the number
of random measurements required for recovering a cut matrix, i.e., a rank-one sign
matrix, using the norms induced by each of these convex bodies.

Proposition 4.3 Suppose x⋆ ∈ Rm×m is a rank-one sign matrix, i.e., a cut matrix,
and we are given n random Gaussian measurements of x⋆. We wish to recover x⋆ by
solving a convex program based on the norms induced by each of P , P1, P2. We have
exact recovery of x⋆ in each of these cases with high probability under the following
conditions on the number of measurements:

1. Using P : n = O(m).
2. Using P1: n = O(m).
3. Using P2: n = m2−m

4 .

Proof For the first part, we note that P is a symmetric polytope with 2m−1 vertices.
Therefore we can apply Corollary 3.14 to conclude that n = O(m) measurements
suffices for exact recovery.

For the second part we note that the tangent cone at x⋆ with respect to the nuclear
norm ball of m × m matrices contains within it the tangent cone at x⋆ with respect
to the polytope P1. Hence we appeal to Proposition 3.11 to conclude that n = O(m)

measurements suffices for exact recovery.
Finally, we note that P2 is essentially the hypercube in
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2

)
dimensions. Appealing

to Proposition 3.12, we conclude that n = m2−m
4 measurements suffices for exact

recovery. !

It is not too hard to show that these bounds are order-optimal, and that they cannot
be improved. Thus this particular instance rigorously demonstrates that the number
of measurements required for exact recovery increases as the relaxations get weaker
(and as the tangent cones get larger). The principle underlying this illustration holds
more generally, namely that there exists a tradeoff between the complexity of the
convex heuristic and the number of measurements required for exact or robust recov-
ery. It would be of interest to quantify this tradeoff in other settings, for example,
in problems in which we use increasingly tighter relaxations of the atomic norm via
theta bodies.



Ascent	towards	convexity… 	

Hierarchies give us an explicit way  
of trading off convexity vs. dimension 
 
 
Tradeoffs are quantifiable, may depend on 
specific problem class. 
 
 
What makes a hierarchy “good”? Quantitative 
and empirical results. Even very “bad” 
hierarchies may converge asymptotically. 
 

Lifted set 
(infinite dimensional) 

Convex hull 

Original (nonconvex) set 

Finite-dimensional 
(small) liftings 

k=1 

k=inf 



Many	applica6ons!	
(essen6ally,	anywhere	polynomials	appear)	
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Latent-variable 

graphical model selection 

Rank minimization, 
nuclear norm, 

compressed sensing 

Game equilibria:  
computation and refinements 

Dynamical systems  
and control theory 

Quantum information  
and entanglement 

∑∑ =≤⊗= 1,0, iiiii ppp ωσρ

Separable 
states 

Z

ρ 

Fluid dynamics  



Theory	&	Prac6ce	
Very strong relaxations  
(but, won’t solve NP-hard problems!)  
Most powerful known general-purpose technique. 
 
But, recall SDP size is O(nd) 
 
Unless d or n are “small”, may be difficult to solve in practice. 
•  For generic continuous problems, extremely competitive if global 

solutions are needed 
•  For problem classes where certification of solutions is required, 

essentially unmatched 
•  For purely discrete problems, not too useful so far (enumeration is 

way too cheap!) 
•  Nevertheless, among best asymptotic methods… 

But, we can do much better if we exploit structure … 
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Key:	Exploi6ng	structure	
¡  Algebraic structure: 
•  Sparsity, Newton polytopes, facial reduction.  
•  Ideal structure, SOS on quotient/coordinate rings. 
•  Graphical: dependency graph, bounded treewidth.  
•  Symmetries: group invariance, representation theory 

¡  Numerical structure: 
•  Interpolation and rank-one SDPs  (e.g., SDPT3) 
•  Displacement rank, fast solvers 
•  Sums/intersections of easier cones (chordality, S/DSOS, 

etc). 
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Math Connections 

•  Probability	theory	(moments,	exchangeability,	de	Finej,	etc)		
•  Real	algebraic	geometry	(Posi-vstellensatz)	
•  Operator	theory	(via	Gelfand-Neimark-Segal)	
•  Quantum	informa-on	(separability,	entanglement)	
•  Harmonic	analysis	on	semigroups	
•  Noncommuta-ve	algebra/probability	(NC-SOS)	
•  Complexity	and	proof	theory	(cer-ficate	degree)	
•  Graphs/combinatorics	(perfect	graphs,	graphons,	flag	algebras)	
•  Tropical	geometry	(SDP	over	more	general	fields)		
•  …	
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Current	research	direc6ons	
What	can	these	do	(or	not	do)?	Analysis	/	lower	bounds:	
	
•  Barak/Brandao/Harrow/Kelner/Steurer/Zhou	(SOS(d)	solves	all	known	

“hard	instances”	of	Unique	Games).	
•  Barak/Hopkins/Kelner/Kothari/Moitra/Potechin,	Deshpande/Montanari,	

etc.	(SOS(o(log	n))	cannot	do	be=er	than	n(1/2-o(1))	for	planted	clique)	
•  Lee/Raghavendra/Steurer	(e.g.,	more	general	relaxa-ons	are	no	be=er,	

and	no	poly-sized	SDP	can	beat	7/8	for	MAX3SAT)	

Even	stronger	relaxa-ons?	
	
•  Ul-mately,	need	novel	ways	of	cer-fying	inequali-es	
•  Bienstock/Zuckerberg?		(not	quite	automa-zable/implementable)	
•  Fawzi/Saunderson/P.	(in	restricted	class	of	problems,	can	do	exponen-ally	

be=er	than	SOS)	
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Prac6cal	challenges	
Wonderful	when	it	works,	but	SDPs	quickly	get	big!	
	
Intrinsic	efficiency	barriers	
(e.g.	linear	vs.	nonlinear	approxima-on	theory)	
	
Scalability:	even	if	convex,	poly-space	is	too	large!	
(alterna-ves?	e.g.,	low-rank	Burer-Monteiro,	fast	spectral	
algorithms	–	Hopkins/Schramm/Shi/Steurer)	
	
Algorithms	that	are	efficient	in	prac-ce,		
not	just	in	Asymptopia. 
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Convex	Algebraic	Geometry	

•  Op#miza#on	+		
							Convex	Geometry	+		
														Algebraic	Geometry	

•  Convex	sets,	algebraic	structure	

•  Pervasive	role	of	duality	
	
•  Exploit	this	structure	to	develop		
convex	op-miza-on	solu-ons,		
with	global	proper-es	

G. Blekherman, P. Parrilo, R. Thomas, ``Semidefinite Optimization and Convex 
Algebraic Geometry,” MOS-SIAM Optimization Series, 2013. 
 www.mit.edu/~parrilo/sdocag/ 



Summary	
•  Convex+Algebraic	methods	

surprisingly	powerful	

•  “Backwards	compa-ble,”	nicely		
generalize	earlier	successful	techniques	

•  Remarkably	effec-ve	for		
small	and	large	problems	

•  Right	at	the	boundary	of	known	theore-cally	efficient	
methods	

•  Exploi-ng	structure	is	fundamental	in	prac-ce	

Thanks for your attention! 
 


