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Outline

Introduction: Problems and Fundamentals

Background: Newton’s Method, Central Path and Neighborhoods

Primal-Dual Path Following for LP: Algorithm and Complexity

Extensions: QP, LCP

Primal and Dual Barrier methods

Relationships between Dual Barrier and Primal-Dual

I give few citations (but note that several participants in this program have
contributed hugely).

The following sources provide more background and bibliographies:

[Nesterov and Nemirovskii, 1994],
[Wright, 1997],
[Ye, 1997],
[Vandenberghe, 2016],
[Renegar, 2001]
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Ethos

There’s extremely elegant theory underlying interior-point methods, that
required the development of analysis: e.g. self-concordance, self-scaled
barriers and cones, primal-dual potential functions. This theory was
instrumental in extensions beyond LP, QP, monotone Linear
Complementarity (LCP) to general conic programming, including
semidefinite programming (SDP).

[Todd, 2001] (SDP review)

[Nesterov and Nemirovskii, 1994] (self-concordance, primal barriers,
conic programming)

[Vandenberghe, 2016] (major elements of theory in slides for class)

[Renegar, 2001] (elegant treatment of main algorithmic ideas)

However, for LP / QP / LCP, algorithms can be developed and powerful
results proved using only very elementary mathematical tools.

That’s the focus of this talk.
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Linear Programming (LP)
Minimize a linear function in Rn over a polyhedron.

min cT x s.t. Ax = b, x ≥ 0. (P)

A is m × n real matrix. WLOG assume full rank, so m ≤ n. Dual:

max
z

bT z s.t. AT z ≤ c.

Introduce dual slack variables for equivalent formulation:

max
z,s

bT z s.t. AT z + s = c , s ≥ 0. (D)

KKT conditions:

Ax = b, AT z + s = c , 0 ≤ x ⊥ s ≥ 0, (KKT)

where ⊥ means xT s = 0. Thus xi ≥ 0, si ≥ 0, and xi si = 0 for all i .

If (x∗, z∗, s∗) satisfies KKT, then x∗ solves (P) and (z∗, s∗) solves (D).
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LP Duality

Weak Duality: If x is feasible for (P) and (z , s) is feasible for (D), then:
cT x ≥ bT z .

Proof: You’ve seen it already this week. Twice!

Strong Duality: Exactly three possible scenarios for the primal-dual pair:

(i) (P) and (D) both have solutions x∗ and (z∗, s∗), and their objectives
are equal at optimality: cT x∗ = bT z∗;

(ii) One of (P), (D) is unbounded and the other is infeasible;

(iii) Both (P) and (D) are infeasible.

Note: Don’t require a regularity condition (e.g. Slater).

Proof: Much trickier! Uses e.g. finite termination of simplex method with
anti-cycling rules.
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Duality and Complementarity
If (x , z , s) is primal-dual feasible, all optimality conditions except
complementarity are satisfied:

Ax = b, AT z + s = c , x ≥ 0, s ≥ 0,

All linear! Easy to place constraints on steps to ensure that all iterates
(xk , zk , sk) remain feasible.

For feasible (x , z , s), we have

0 ≤
n∑

i=1

xi si = xT s = xT (c − AT z) = cT x − bT z ,

so that cT x ≥ bT z . (This is the famous one-line proof of weak duality.)

Notation: Measure near-optimality of a feasible triple (x , z , s) by

µ =
1

n
xT s =

1

n

n∑
i=1

xi si .
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KKT and Constrained Nonlinear Equations
Write KKT conditions as a system of constrained nonlinear equations:
Define

X = diag(x1, x2, . . . , xn), S = diag(s1, s2, . . . , sn), e = (1, 1, . . . , 1)T ,

and rewrite KKT as follows:

F0(x , z , s) :=

 Ax − b
AT z + s − c

XSe

 =

0
0
0

 , (x , s) ≥ 0.

Note that F0 is a square nonlinear system: F0 : R2n+m → R2n+m.

Only “slightly” nonlinear: just the last term, which is

XSe =


x1s1

x2s2
...

xnsn

 = 0.
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Primal-Dual Interior-Point Approach

Basic primal-dual approach generates a sequence (xk , zk , sk) of strictly
feasible triples, satisfying (note strict inequalities):

F◦ := {(x , z , s) : Ax = b, AT z + s = c , x > 0, s > 0}.

Steps are Newton-like steps on F0:

(xk+1, zk+1, sk+1) = (xk , zk , sk)+αk(∆xk ,∆zk ,∆sk), some αk > 0.

Iterate toward complementarity, hence optimality:

µk :=
1

n
(xk)T sk → 0 as k →∞.

Keep the pairwise products xki s
k
i , i = 1, 2, . . . , n more or less balanced

— not too far from their average value µk . (Explicitly or implicity.)
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Complexity

Polynomial complexity follows from a decrease per iteration of the form

µk+1 ≤ (1− Cn−ν)µk , k = 0, 1, 2, . . . ,

where C > 0 is independent of n and ν ≥ .5 for conventional methods.

Such rates require delicate manipulation of the modified Newton strategy
for computing steps, and also of the choice of step length αk .

They lead to complexity results via a standard argument:

µK ≤ εµ0 ⇐ (1− Cn−ν)K ≤ ε
⇔ K log(1− Cn−ν) ≤ log ε

⇐ K (−Cn−ν) ≤ log ε since log(1 + t) ≤ t

⇔ K ≥ nν | log ε|/C .

Thus get µK/µ0 ≤ ε in O(nν | log ε|) iterations.
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Newton’s Method for Nonlinear Algebraic Equations
Consider F : RN → RN smooth. We wish to solve F (w) = 0.

Basic Idea: At some iterate w , one form of Taylor’s theorem implies

F (w + d) = F (w) + J(w)d + o(‖d‖),

where o(‖d‖)/‖d‖ → 0 as d → 0, and J(w) is the Jacobian (N × N
matrix of first partial derivatives):

J(w) =

[
∂Fi
∂wj

(w)

]
i = 1, 2, . . . , n
j = 1, 2, . . . , n

.

If J(w) is nonsingular, Newton step is d = −J(w)−1F (w). From
expansion above we get for this d :

F (w + d) = o(‖J(w)−1‖ ‖F (w)‖).

If the smallest singular value of J(w) is uniformly bounded below on some
region (as in the neighborhood of a nondegenerate solution w∗), have

F (w + d) = o(‖F (w)‖).
Wright (UW-Madison) Interior-Point Methods August 2017 10 / 48



Newton’s Method in 1D
This suggests an iterative scheme: Starting from some w0 ∈ RN :

dk = −J(wk)−1F (wk), wk+1 = wk + dk , k = 0, 1, 2, . . . .

0 w

F(w)

w

w*

ww2 1
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Newton’s Method for Minimization
There is also a Newton’s method for minimization:

min
x∈RN

f (x),

where f : RN → R is smooth (typically twice Lipschitz continuously
differentiable).

Motivated again by Taylor’s theorem, using the approximation

f (x + d) ≈ f (x) +∇f (x)Td +
1

2
dT∇2f (x)d .

When ∇2f (x) is positive definite, the minimizer is

d = −∇2f (x)−1∇f (x).

... the same step we get by applying nonlinear-equations Newton’s
method to F (x) = ∇f (x).

Local quadratic convergence to nondegenerate minimizers x∗, for which
∇f (x∗) = 0 and ∇2f (x∗) is positive definite.
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Newton’s Method for Minimization
By substituting the Newton step d = −∇2f (x)−1∇f (x) into the quadratic
approximation, obtain a “Newton decrement”

f (x + d) ≈ f (x)− 1

2
∇f (x)T∇2f (x)−1∇f (x)

= f (x)− 1

2
dT∇2f (x)d .

Introduce notation for the decrement:

λ(x) := ‖∇f (x)‖x∗ = ‖d‖x ,

where

‖v‖x∗ :=
(
vT∇2f (x)−1v

)1/2
, ‖w‖x :=

(
dT∇2f (x)d

)1/2

are Hessian-weighted norms [Vandenberghe, 2016].

We can make stronger statements about the decrement when f is
self-concordant. It plays an important role in the analysis of primal barrier
methods.
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Nonlocal Results? Do we need them?

Under certain assumptions, Newton’s method converges locally at a
quadratic rate.

What happens outside the domain of quadraticness? Are global rates of
convergence available? Leading to complexity bounds?

In general, no. For some functions Newton is as slow as first-order
methods.

But for self-concordant functions, yes! These have 3rd derivatives
along any direction bounded in terms of 2nd derivatives, so the
quadratic approximation has guaranteed quality everywhere, and a
scaled Newton step makes significant progress.

For primal-dual methods for LP, we can specialize the analysis to the
particular form of F (perturbed KKT conditions).
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Primal-Dual Path-Following

Path-following primal-dual interior-point methods generate search
directions from perturbations of the KKT system F0, and choose step
lengths αk with reference to central path neighborhoods.

The Central Path is a trajectory in primal-dual space defined by a
scalar-parametrized variant of the KKT system: For any τ > 0 let
(xτ , zτ , sτ ) be the solution of

Fτ (x , z , s) :=

 Ax − b
AT z + s − c
XSe − τe

 =

0
0
0

 , (x , s) > 0.

Central path is
C := {(xτ , zτ , sτ ) : τ > 0}.

Strictly feasible set F◦ nonempty ⇒ (xτ , zτ , sτ ) is defined uniquely for
each τ > 0.
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Central Path Neighborhoods

Require more than strict feasibility of iterates, which is (xk , sk) > 0.
Require iterates to stay within certain neighborhoods of the central path.

Want the pairwise products xi si to be not too different for i = 1, 2, . . . , n.

N2(θ) := {(x , z , s) ∈ F◦ : ‖XSe − µe‖2 ≤ θµ, µ = xT s/n},

for some θ ∈ (0, 1). Typically θ = .25 or .5.

N−∞(γ) := {(x , z , s) ∈ F◦ : xi si ≥ γµ, µ = xT s/n, i = 1, 2, . . . , n},

for some γ ∈ (0, 1). Typically γ = .001.

The N−∞ neighborhood is wider than N2.

Note that N−∞(γ)→ F◦ as γ → 0. (But N2(θ) 6→ F◦ as θ → 1.)
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Path-Following Strategy

Define a target point on the central path: (x(τ), z(τ), s(τ)) for some
τ > 0 that depends on the current iterate;

Calculate a Newton step for Fτ from the current iterate;

Choose step length αk along the Newton step to stay inside a central
path neighborhood.

We describe a long-step path-following algorithm (LPF) that starts from a
point (x0, z0, s0) ∈ N∞(γ) for some γ ∈ (0, 1) and achieves a geometric
decrease per iteration in µ:

µk+1 ≤ (1− δn−1)µk , k = 0, 1, 2, . . . ,

for δ independent of n. Thus we have

µk ≤ εµ0 in O(n log ε) iterations.

It’s also fast in practice.
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Long-Step Path Following
Notation:

µk = (xk)T sk/n,

(xk(α), zk(α), sk(α)) = (xk , zk , sk) + α(∆xk ,∆zk ,∆sk).

Algorithm LPF.

Choose γ ∈ (0, 1), σmin and σmax with 0 < σmin < σmax < 1;
Choose (x0, z0, s0) ∈ N−∞(γ);
for k = 0, 1, 2, . . . do

Choose σk ∈ [σmin, σmax];
Let (∆xk ,∆zk ,∆sk) be the Newton step for Fσkµk at (xk , zk , sk);
Choose αk to be the largest value in (0, 1] for which

(xk(α), zk(α), sk(α)) ∈ N−∞(γ);

Set (xk+1, zk+1, sk+1) = (xk(αk), zk(αk), sk(αk)).
end for
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The Search Direction
The Newton step for Fσkµk at (x , z , s) satisfies (omitting superscripts):0 AT I

A 0 0
S 0 X

∆x
∆z
∆s

 =

 0
0

−XSe + σkµke

 .
Decomposing the third block into individual components, we have

si∆xi + xi∆si = −xi si + σkµk .

Summing both sides over i = 1, 2, . . . , n, obtain

sT∆x + xT∆s = −xT s + σknµk = −(1− σk)nµk

The difference between (x + ∆x , z + ∆z , s + ∆s) and the solution of
Fσkµk (x , z , s) = 0 is only the term ∆X∆Se in the third block, where

∆X = diag(∆x1,∆x2, . . . ,∆xn), ∆S = diag(∆s1,∆s2, . . . ,∆sn).

The analysis is mostly concerned with showing that this term is not too
large, that is, the linear approximation to Fσkµk that is the basis of
Newton’s method is good enough to make substantial progress.
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Can plot progress of the algorithm in “xs” space:

C

2 2

x  s
1 1

N−

8 (γ)

1

2

3

0

x  s
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Convergence and Complexity in Five Easy Steps
The result follow from five technical but elementary claims, each building
on the one before:

1 If u, v are two vectors in Rn with uT v ≥ 0, we have

‖UVe‖ ≤ 2−3/2‖u + v‖2,

where U = (u1, u2, . . . , un), V = (v1, v2, . . . , vn).

2

‖∆X∆Se‖ ≤ 2−3/2‖(XS)−1/2(−XSe + σµe)‖2.

3

‖∆X∆Se‖ ≤ 2−3/2(1 + γ−1)nµ.

4

(xk(α), zk(α), sk(α)) ∈ N−∞(γ) for all α ∈
[

0, 23/2γ
1− γ
1 + γ

σ

n

]
.

5 µk+1 ≤ (1− δn−1)µk for some δ independent of n and all k ≥ 0.
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Proof of 1
For scalars α and β with αβ ≥ 0, we have |αβ| = αβ ≤ (α + β)2/4.

Define P = {i : uivi ≥ 0}, N := {i : uivi < 0}. Since uT v ≥ 0, we have

0 ≤ uT v =
∑
i∈P

uivi +
∑
i∈N

uivi = ‖[uivi ]i∈P‖1 − ‖[uivi ]i∈N ‖1.

Thus

‖UVe‖ =
(
‖[uivi ]i∈P‖2 + ‖[uivi ]i∈N ‖2

)1/2

≤
(
‖[uivi ]i∈P‖2

1 + ‖[uivi ]i∈N ‖2
1

)1/2
since ‖ · ‖2 ≤ ‖ · ‖1

≤
(

2 ‖[uivi ]i∈P‖2
1

)1/2
by the bound above

≤
√

2

∥∥∥∥[1

4
(ui + vi )

2

]
i∈P

∥∥∥∥
1

from the α/β bound

= 2−3/2
∑
i∈P

(ui + vi )
2 ≤ 2−3/2

n∑
i=1

(ui + vi )
2 = 2−3/2‖u + v‖2.
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Proof of 2

Multiply last block of Newton equations by (XS)−1/2, and define
D = X 1/2S−1/2 to obtain

S∆x + X∆s = −XSe + σµe

⇒ D−1∆x + D∆s = (XS)−1/2(−XSe + σµe).

Set u = D−1∆x and v = D∆s and note from first two blocks of Newton
equations that

uT v = ∆xT∆s = −∆xTAT∆z = −(A∆x)T∆z = 0.

Thus can apply 1 to deduce that

‖∆X∆Se‖ ≤ 2−3/2‖(XS)−1/2(−XSe + σµe)‖2.
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Proof of 3

Expand the right-hand side of 2:

‖∆X∆Se‖ ≤ 2−3/2
∥∥∥−(XS)1/2e + σµ(XS)−1/2e

∥∥∥2

≤ 2−3/2

[
xT s − 2σµeT e + σ2µ2

n∑
i=1

1

xi si

]

≤ 2−3/2

[
xT s − 2σµeT e + σ2µ2 n

γµ

]
since xi si ≥ γµ

≤ 2−3/2

[
1− 2σ +

σ2

γ

]
nµ since eT e = n

≤ 2−3/2(1 + γ−1)nµ since σ ∈ (0, 1).
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Proof of 4
From 3 we have

|∆xi∆si | ≤ ‖∆X∆Se‖2 ≤ 2−3/2(1 + γ−1)nµ.

Thus from xi si ≥ γµ and the third block of the Newton equations, we have

xi (α)si (α) = (xi + α∆xi )(si + α∆si )

= xi si + α(xi∆si + si∆xi ) + α2∆xi∆si

≥ xi si (1− α) + ασµ− α2|∆xi∆si |
≥ γ(1− α)µ+ ασµ− α22−3/2(1 + γ−1)nµ.

Meanwhile, again using the third block of Newton equations, we have

nµ(α) = x(α)T s(α) = (x + α∆x)T (s + α∆s)

= xT s + α(sT∆x + xT∆s) + α2∆xT∆s

= (1− α + ασ)nµ.
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So for xi (α)si (α) ≥ γµ(α), it suffices to have

γ(1− α)µ+ ασµ− α22−3/2(1 + γ−1)nµ ≥ γ(1− α + ασ)µ,

which is equivalent to

α ≤ 23/2γ
1− γ
1 + γ

σ

n
,

proving 4.
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Proof of 5
We showed already that

µk(α) = (1− α(1− σk))µk ,

so that µk(α) is decreasing in α over α ∈ [0, 1].

From 4, we have for step actually taken that

αk ≥ 23/2γ
1− γ
1 + γ

σ

n
.

Thus

µk+1 = µk(αk) ≤ µk
(

1−
(

23/2γ
1− γ
1 + γ

σk
n

(1− σk)

))
µk .

Recalling that σk ∈ [σmin, σmax] for all k , we have that

µk+1 ≤ (1− δn−1)µk ,

for

δ = 23/2γ

n

1− γ
1 + γ

min(σmin(1− σmin), σmax(1− σmax)).
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Other Path-Following Algorithms: SPF

Short-step Path-Following (SPF) uses the more restricted neighborhood
N2(0.4), fixed σ = 1− 0.4/

√
n, and full modified Newton steps.

Algorithm SPF.

Set σ = 1− 0.4/
√
n;

Choose (x0, z0, s0) ∈ N2(0.4);
for k = 0, 1, 2, . . . do

Let (∆xk ,∆zk ,∆sk) be the Newton step for Fσµk at (xk , zk , sk);
Set (xk+1, zk+1, sk+1) = (xk , zk , sk) + (∆xk ,∆zk ,∆sk);

end for

Analysis is similar to LPF, leading to a better dependence on n:

µk+1 = (1− 0.4/
√
n)µk ,

thus achieving µk ≤ εµ0 in O(
√
n log ε) iterations.

Better complexity bound, but slower in practice. (That’s a theme!)
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Other Path-Following Algorithms: Predictor-Corrector
Use two neighborhoods N2(.25) and N2(.5). Alternate between

Predictor steps with σ = 0 (unmodified Newton on KKT) that start
in N2(.25) and stop at the boundary of N2(.5);
Corrector steps with σ = 1 that return to N2(.25).

Algorithm PC.

Choose (x0, z0, s0) ∈ N2(0.25);
for k = 0, 1, 2, . . . do
if k even then

Let (∆xk ,∆zk ,∆sk) be the Newton step for F0 at (xk , zk , sk);
Choose αk to be the largest value in (0, 1] for which

(xk(α), zk(α), sk(α)) ∈ N2(0.5);

Set (xk+1, zk+1, sk+1) = (xk(αk), zk(αk), sk(αk));
else

Let (∆xk ,∆zk ,∆sk) be the Newton step for Fµk at (xk , zk , sk);
Set (xk+1, zk+1, sk+1) = (xk , zk , sk) + (∆xk ,∆zk ,∆sk);

end if
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PC in xs space

2
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x  s
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2

x  s

Analysis and complexity is similar to SPF: O(
√
n log ε) iterations.
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Primal-Dual Potential Reduction
An alternative way to balance centrality of (xk , zk , sk) while steadily
reducing duality gap µk to zero is by using a primal-dual logoarithmic
potential function:

Φρ(x , s) := ρ log xT s −
n∑

i=1

log xi si ,

for ρ > n. Note that

Φρ(x , s) := (ρ− n) logµ−
n∑

i=1

log
xi si
µ

+ ρ log n, where µ = xT s/n,

so “reducing ρ” and “maintaining centrality” are both represented.

All iterates are strictly feasible: (xk , zk , sk) ∈ F◦.
Search directions are modified Newton steps for Fσµk , with σ ≡ n/ρ.

Choose step length α to minimize Φρ along
(xk , zk , sk) + α(∆xk ,∆zk ,∆sk);
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Algorithm PDPR

Algorithm PDPR.

Choose ρ > n, σ = n/ρ, and (x0, z0, s0) ∈ F◦;
for k = 0, 1, 2, . . . do

Let (∆xk ,∆zk ,∆sk) be the Newton step for Fσµk at (xk , zk , sk);
Set αmax = largest value of α s.t. (xk(α), zk(α), sk(α)) ∈ F◦;
Set

αk = arg min
α∈(0,αmax)

Φρ(xk(α), sk(α));

Set (xk+1, zk+1, sk+1) = (xk(αk), zk(αk), sk(αk));
end for
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Complexity of PDPR

For ρ ≥ n +
√
n, we have

Φρ(xk+1, sk+1) ≤ Φρ(xk , sk)− 0.15, k = 0, 1, 2, . . . ,

so that Φρ(xk , sk) ↓ −∞ at a steady rate.

Can show that
µ ≤ exp (Φρ(x , s)/(ρ− n)) ,

so we have µk ≤ ε in

Φρ(x0, s0) + (ρ− n)| log ε|
δ

iterations.
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Initialization

The description of LPF assumes that we can find an initial point
(x0, z0, s0) ∈ N−∞(γ). This is nontrivial in general.

Two approaches:

Modify the algorithm to not require feasiblity of the equality
constraints Ax = b and AT z + s = c .

I Infeasible-interior-point algorithms.

Modify the LP formulation so that a feasible point is obvious.

I Homogeneous self-dual (HSD) formulations.
I Solved using interior-point methods for monotone linear

complementarity (see later).

In implementations, infeasible-interior-point is preferred, and the analysis
above can be extended to show convergence and complexity, at slightly
worse rates: O(n2 log ε) instead of O(n log ε).

But HSD is fairly practical, and has elegant theory.
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Infeasible-Interior-Point
Start from any point (x0, z0, s0) with (x0, s0) > 0.

For any iterate (xk , zk , sk), define residuals

rkb := Axk − b, rkc := AT zk + sk − c .

Search directions are still Newton steps for Fσkµk at (xk , zk , sk), now
defined by these Newton equations: 0 AT I

A 0 0
Sk 0 X k

∆xk

∆zk

∆sk

 =

 −rkc
−rkb

−X kSke + σkµke

 .
No longer have the nice relation (∆xk)T∆sk = 0, so µ does not decrease
linearly in steplength α along (∆xk ,∆zk ,∆sk).

The residual norms rb and rc do however decrease linearly in α, since the
first two blocks of the Newton system are linear.
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Algorithm IPF
Infeasible extension of the N−∞ central path neighborhood:

N−∞(γ, β) := {(x , z , s) : ‖(rb, rc)‖ ≤ β‖(r0
b , r

0
c )‖(µ/µ0), xi si ≥ γµ},

where µ = xT s/n as usual, and γ ∈ (0, 1) and β ≥ 1.

Algorithm IPF.

Choose γ ∈ (0, 1), β ≥ 1, σmin and σmax with 0 < σmin < σmax < 1;
Choose (x0, z0, s0) with (x0, s0) > 0;
for k = 0, 1, 2, . . . do

Choose σk ∈ [σmin, σmax];
Let (∆xk ,∆zk ,∆sk) be the Newton step for Fσkµk at (xk , zk , sk);
Choose αk to be the largest value in (0, 1] for which

(xk(α), zk(α), sk(α)) ∈ N−∞(γ, β);

and
µk(α) ≤ (1− .01α)µk ;

Set (xk+1, zk+1, sk+1) = (xk(αk), zk(αk), sk(αk)).
end for
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Convergence of IPF

Infeasibility complicates the analysis considerably, but still requires only
elementary tools.

Ultimately, show that αk ≥ δ̄/n2 for some δ̄ independent of n and all k .
Thus get µk ≤ εµ0 and ‖(rkb , rkc )‖ ≤ βε‖(r0

b , r
0
c )‖ in O(n2 log ε) iterations.
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Extension: Monotone Linear Complementarity
Given M ∈ Rn×n positive semidefinite and q ∈ Rn, seek (x , s) such that

s = Mx + q, (x , s) ≥ 0, xT s = 0. (LCP)

Can add extra unconstrained variables and equality constraints to get a
mixed monotone LCP.

KKT conditions for LP and convex QP are mixed monotone LCP. For LP:[
s
0

]
=

[
0 −AT

A 0

] [
x
z

]
+

[
c
−b

]
, (x , s) ≥ 0, xT s = 0.

For convex QP problem

min
1

2
xTQx + cT x s.t. Ax = b, x ≥ 0,

the corresponding LCP is[
s
0

]
=

[
Q −AT

A 0

] [
x
z

]
+

[
c
−b

]
, (x , s) ≥ 0, xT s = 0.
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Interior-Point Algorithms for LCP

Algorithms for monotone LCP are almost identical to those for LP. It is an
appealing framework because

notation is simpler — just (x , s);

can be extended immediately to mixed montone LCP;

apply to convex QP as well as LP, and also other LCP applications
e.g. from games.

The analysis is a little different from LP because we have only
∆xT∆s ≥ 0 instead of ∆xT∆s = 0, but otherwise algorithms,
convergence analysis, complexity results are much the same.
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LP: Homogeneous Self-Dual Formulation
Returning to LP: We can derive a mixed monotone LCP from the KKT
conditions for LP, such that

It’s easy to find a strictly feasible initial point for the mixed LCP;

The mixed LCP always has a solution;

This solution yields either a primal-dual solution pair for the LP, or a
certificate of infeasibility.

Given (x0, z0, s0) such that (x0, s0) > 0 define

b̄ := b − Ax0, c̄ := c − AT z0 − s0, t̄ := cT x0 + 1− bT z0.

(The first two represent initial infeasibilities.) The mixed LCP is then
κ
s
0
0

 =


0 −cT −bT t̄
c 0 −AT −c̄
−b A 0 b̄
−t̄ c̄T −b̄T 0



τ
x
z
θ

+


0
0
0

(x0)T s0 + 1

 ,
0 ≤ τ ⊥ κ ≥ 0, 0 ≤ x ⊥ s ≥ 0.
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HSD Results
Note that the original LP variables appear alongside scalar auxiliary
variables κ, τ, θ.

A strictly feasible initial point for the mixed LCP is

(τ, x , z , θ, κ, s) = (1, x0, z0, 1, 1, s0).

The term “homogeneous self-dual” (HSD) arises from the mixed LCP
being reduced KKT conditions for a self-dual LP formulation that looks
quite similar — and that is homogeneous except for the term (x0)T s0 + 1.

Result 0: The mixed LCP has a strictly complementary solution. This
follows from

the close relationship of the mixed LCP to the HSD linear program

the fact that the HSD LP is feasible

when a primal-dual pair of LPs has a solution, it has a strictly
complementary solution.
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HSD Results

Result 1: Any solution (τ∗, x∗, z∗, θ∗, κ∗, s∗) of the mixed LCP has
θ∗ = 0. (Proof: Elementary)

Result 2: The original LP has primal-dual solutions if and only if all
strictly complementary solutions of the mixed LCP have κ∗ = 0 and
τ∗ > 0. These solutions are x∗/τ∗ for the primal and (z∗/τ∗, s∗/τ∗) for
the dual.

Result 3: If the mixed LCP has a strictly complementary solution for
which κ∗ > 0, then at least one of cT x∗ and −bT z∗ is negative, and

if cT x∗ < 0, then the dual LP is infeasible;

if −bT z∗ < 0, then the primal LP is infeasible.
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Log Barrier Functions for LP
We turn now to a more traditional approach based on log barrier functions
[Frisch, 1955].

Deal with an algebraic constraint ci (x) ≥ 0 by adding a term − log ci (x)
into the objective, weighted by a parameter.

Log is defined only when the constraint is strictly feasible: ci (x) > 0;

Goes to ∞ as ci (x)→ 0.

It is also self-concordant, which allows non-local results to be proved
about convergence of Newton’s method applied to the barrier formulation.

For LP, we have barrier formulations of P and D, parametrized by τ > 0:

min
x

1

µ
cT x −

n∑
i=1

log xi s.t. Ax = b, (P-µ)

max
z

1

µ
bT z +

m∑
i=1

log(ci − AT
·i z). (D-µ)
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Optimality Conditions, Central Path

KKT conditions for (P-µ) are:

c − µX−1e − AT z = 0, Ax = b,

where as before X = diag(x1, x2, . . . , xn) and e = (1, 1, . . . , 1)T . Defining
si = µ/xi , i = 1, 2, . . . , n, we can rewrite these conditions as:

c − s − AT z = 0, Ax = b, XSe = µe,

which are exactly the conditions that define the point (xµ, zµ, sµ) on the
central path C!

Thus the solutions of (P-µ) for µ > 0 are exactly the projections of
primal-dual central path onto x-space.

A similar derivation works for the dual: The solutions of (D-µ) for µ > 0
are exactly the projection of C into z-space. (Here we set s := c − AT z
and xi := µ/si .)
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Path-Following

Thus we can solve (D) by following the path of solutions of (D-µ) as µ ↓ 0.
The strategy is basically the same as in primal-dual methods:

Take Newton steps for (D-µ) at current µ, with steplengths chosen to
maintain strict feasibility of iterates, until a near-solution for (D-µ) is
found;

Decrease µ by some factor σ < 1.

The same strategy can be applied to (P-µ), except that here we take
Lagrange-Newton steps, because of the constraint Ax = b.

Complexity results follow from:

Only one or a few Newton steps needed for each µ;

(1− σ)−1 log ε outer iterations to achieve µ/µ0 < ε.
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Newton Directions: Dual Barrier and Primal-Dual
Defining s := c − AT z , Newton equations for (D-τ) are

−AS−2AT ∆̃z = −1

τ
b + AS−1e.

We can “unpack” these equations to make a direct comparison with the
primal-dual equations. Suppose that the current s is the exact solution of
(D-µ). Then for x := µS−1e, we have

b = Ax = µAS−1e,

so the system above is

−AS−2AT ∆̃z =
(
−µ
τ

+ 1
)
AS−1e.

Choosing τ = σµ as in primal-dual, we find that ∆̃z is part of the solution
of the unpacked system0 AT I

A 0 0
S 0 X


∆̃x

∆̃z

∆̃s

 =

 0
0

µ
(
1− 1

σ

)
e

 .
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Primal-Dual vs Dual Barrier

Compare the dual system0 AT I
A 0 0
S 0 X


∆̃x

∆̃z

∆̃s

 =

 0
0

µ
(
1− 1

σ

)
e

 .
with the primal-dual system from the point (xµ, zµ, sµ):0 AT I

A 0 0
S 0 X

∆x
∆z
∆s

 =

 0
0

−XSe + σµe

 =

 0
0

µ(−1 + σ)e

 .
The RHS coefficients are:

Dual Barrier:
σ − 1

σ
, Primal-Dual: σ − 1.
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Primal-Dual vs Dual Barrier

When σ is close to 1, there is little difference. But when σ is significantly
less than 1 (as in long-step methods), the dual barrier step is much longer.
It overshoots the solution of (D-σµ).

However, the directions ∆z and ∆̃z are the same, modulo a scaling. Thus
we can recover good behavior of dual barrier for long step methods by

ensuring accurate enough solution of each subproblem (D-µ);

scaling the first step taken after each resetting of the target to σµ.

[Wright and Jarre, 1998]
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