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Organization

1. Thomas Rothvoss (1.x lectures): Introduction to LP
Extended Formulations

2. Hamza Fawzi (1.x lectures): Introduction to SDP Extended
Formulations

3. Prasad Raghavendra (1.x lectures): Lower bounds for
LP/SDP lifts
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Extended formulation

◮ Given polytope P = {x ∈ Rn | Ax ≤ b}
→ many inequalities

◮ Write P = {x ∈ Rn | ∃y : Bx+ Cy ≤ d}
→ few inequalities

P

Q

linear
projection

◮ The extension complexity of P is

xc(P ) := min






#facets of Q |

Q polyhedron
p linear map
p(Q) = P
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◮ xc(conv(Spanning trees)) ≤ O(n3)
⇒ optimize over all Spanning trees with LP of size O(n3)

P

Q

linear
projection

◮ In reverse: If xc(P ) is high for
TSP / MaxCut / Correlation / Matchings, then those
problems cannot be solved with a single poly-size LP!



Part I

A non trivial example -

Knapsack
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◮ Input:
◮ n objects with weight wi ∈ Z+

◮ profit pi ∈ Q+

◮ knapsack size B ∈ Q+

◮ Goal: Find subset of objects, maximizing the profit and
not exceeding the weight bound:

OPT = max
I⊆{1,...,n}

{∑

i∈I

pi |
∑

i∈I

wi ≤ B
}

Known:

◮ weakly NP-hard

◮ Pseudo-polynomial time algorithm

◮ FPTAS

◮ xc(conv{x ∈ {0, 1}n |
∑n

i=1wixi ≤ B}) ≤ O(n ·B).



A dynamic program for Knapsack

Lemma

Knapsack can be solved in time O(n ·B).

Algorithm

(1) Compute table entries

T (i,W ) = max
I⊆{1,...,i}

{∑

j∈I

pj |
∑

j∈I

wj = W
}

= max. profit of weight W subsets of first i items

using dynamic programming

T (i,W ) = max
{
T (i− 1,W )
︸ ︷︷ ︸

don’t take i

, T (i− 1,W − wi) + pi
︸ ︷︷ ︸

take i

}
∀i ∀W ≤ B
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Instance:

w1 = 2

w2 = 1

w3 = 2

◮ Create a network with nodes (i,W ) and
◮ “Don’t take i”-edge from (i− 1,W )→ (i,W ) at cost 0
◮ “Take i”-edge from (i− 1,W − wi)→ (i,W ) at cost pi

Observations:

◮ s-t path ←→ Knapsack solution

◮ max cost s-t path = max profit packing
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Knapsack (4)

◮ Let G = (V,E) be network.

◮ Let Ei = {take item i edges }

Observation

The Knapsack polytope is the projection of Q with

xi =
∑

e∈Ei

y(e) ∀i ∈ [n]

y(δ+(v))− y(δ−(v)) =







1 v = s

−1 v = t

0 otherwise

∀v ∈ V

x, y ≥ 0

Corollary

xc(Knapsack polytope) ≤ O(n ·B).
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Knapsack (5)

Open problem

Consider a Knapsack polytope

P = conv
{

x ∈ {0, 1}n |
n∑

i=1

wixi ≤ B
}

.

Is there is always a polytope K with

◮ K ⊆ P ⊆ (1 + ε)K

◮ xc(K) ≤ poly(n, 1ε )?

Known:

◮ xc(K) ≤ nO(1/ε) possible
(Bienstock)

K

(1 + ε)K
P



Part II

Slack-matrices, Yannakakis’

Theorem and Communication

Complexity
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Slack-matrix

Write: P = conv({x1, . . . , xv}) = {x ∈ Rn | Ax ≤ b}

S# facets

# vertices

U
≥
0

V ≥ 0r
r

Sij
Sij = bi −AT

i xj

slack-matrix

Pb

b b

b

b
Aix = bi

b
xj

Sij

Non-negative rank:

rk+(S) = min{r | ∃U ∈ R
f×r
≥0 , V ∈ Rr×v

≥0 : S = UV }
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Theorem (Yannakakis ’88)

If S is the slack-matrix for P = {x ∈ Rn | Ax ≤ b}, then
xc(P ) = rk+(S).

Factorization S = UV ⇒ extended formulation:
◮ Let P = {x ∈ Rn | ∃y ≥ 0 : Ax+ Uy = b}
◮ For vertex xj : Aix

j + UiV
j = bi.

◮ Aix > bi =⇒ Aix+ Uiy
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≥0

> bi.
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Theorem (Yannakakis ’88)

If S is the slack-matrix for P = {x ∈ Rn | Ax ≤ b}, then
xc(P ) = rk+(S).

Extended form. ⇒ factorization:

◮ Given an extension
Q = {(x, y) | Bx+ Cy ≤ d}

◮ For facet i:
u(i) := conic comb of i

◮ For vertex xj :
v(j) := d−Bxj − Cyj = slack of (xj , yj)
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Yannakakis’ Theorem

Theorem (Yannakakis ’88)

If S is the slack-matrix for P = {x ∈ Rn | Ax ≤ b}, then
xc(P ) = rk+(S).

Extended form. ⇒ factorization:

◮ Given an extension
Q = {(x, y) | Bx+ Cy ≤ d}

◮ For facet i:
u(i) := conic comb of i

◮ For vertex xj :
v(j) := d−Bxj − Cyj = slack of (xj , yj)

Q

Aix+ 0y ≤ bi

b

b
b

b

b

b

b

b

b

b

b

b

xj
b

(xj , yj)
b

P

〈u(i), v(j)〉 = u(i)Td
︸ ︷︷ ︸

=bi

−u(i)B
︸ ︷︷ ︸

=Ai

xj − u(i)C
︸ ︷︷ ︸

=0

yj = Sij



Rectangle covering lower bound

Observation

rk+(S) ≥ rectangle-covering-number(S).
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Communication complexity

Setting:

◮ Function f : X × Y → R

◮ Players Alice and Bob agree apriori on a deterministic
communication protocoll

◮ Alice receives x ∈ X, Bob receives y ∈ X

◮ They exchange messages to compute f(x, y)

Alice
x ∈ X

Bob
y ∈ Y1

1, 0

0

1

both know f(x, y)

CC(f) = min
protocoll

max
x∈X,y∈Y

{bits to compute f(x, y)}
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Observations:

◮ For a leave v of tree, Rv := {(x, y) : protocoll ends in v} is
a monochromatic rectangle

◮ A protocol for matrix S exchanging k bits
⇒ S can be partitioned into 2k monochromatic rectangles
⇒ S is sum of 2k rank-1 matrix

◮ xc(polytope) ≤ 2CC(slack matrix)
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An exact model (1)

We have seen:

2CCnondet(supp. of slack matrix) ≤ xc(polytope) ≤ 2CC(slack matrix)

Exact communication model (Faenza, Fiorini, Grappe,
Tiwary & Zhang):

◮ Alice receives row index i. Bob receives col index j

◮ Alice and Bob have internal randomness. They exchange
0/1 bits.

◮ At the end one of them outputs a non-negative number
with Sij = Erandomness[protocoll(i, j)].

Let CCRAND(S) be min. # bits. Then

xc(polytope) = 2CCRAND(slack matrix S)
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An exact model (2)

Let ui, vj ∈ Rr
≥0 with Sij = 〈ui, vj〉.

Sij

S

i

j

Alice

Bob

Protocoll with log2(r) bits:

◮ Alice picks k ∈ [r] with probability vi(k) (ass. ‖vi‖1 ≤ 1)

◮ Bob receives k from Alice and outputs uj(k)

Then

E[protocoll(i, j)] =
r∑

k=1

vi(k) · uj(k) = 〈ui, vj〉
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An exact model (3)

Consider depth c protocoll tree:

Alice

Bob

Alice

Bob

leaf w

c

Sij =
∑

leaves w

value(w) · Pr[protocoll(i, j) ends at w] =

∑

leaves w

value(w)
︸ ︷︷ ︸

≥0

·Pr[Alice stays on w path | i] · Pr[Bob stays on w path | j]

⇒ 2c-size non-neg factorization
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The Lower Bound on the

Correlation Polytope
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Observation: The polytope is NP-hard.
For graph G = ([n], E) with adjacency matrix AG

maxcut(G) = max
x∈{0,1}n

(DG−AG)•xx
T =

∑

(i,j)∈E

(xi + xj − 2xixj)
︸ ︷︷ ︸

=1 if xi 6=xj ,0 o.w.



Correlation polytope (1)

The correlation polytope is

COR = conv{bbT : b ∈ {0, 1}n}

Example: For n = 2,

COR = conv

{(
0 0
0 0

)

,

(
1 0
0 0

)

,

(
0 0
0 1

)

,

(
1 1
1 1

)}

Observation: The polytope is NP-hard.
For graph G = ([n], E) with adjacency matrix AG

maxcut(G) = max
x∈{0,1}n

(DG−AG)•xx
T =

∑

(i,j)∈E

(xi + xj − 2xixj)
︸ ︷︷ ︸

=1 if xi 6=xj ,0 o.w.

Theorem (Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12)

xc(COR) ≥ 2Ω(n).

◮ Here: Simplified proof by Kaibel and Weltge
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For all a ∈ {0, 1}n, (2diag(a)− aaT ) • Y ≤ 1 is a feasible
inequality for Y ∈ COR.
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Lemma

For all a ∈ {0, 1}n, (2diag(a)− aaT ) • Y ≤ 1 is a feasible
inequality for Y ∈ COR.

◮ Suffices to check slack for Y = bbT .

1− 2·

1
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1
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0
0
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supp(a)

•

1
1
1
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1
1
1
1

1
1
1
1

1
1
1
1

supp(b)

+ 1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

supp(a)

•

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

supp(b)



Correlation polytope (2)

Lemma

For all a ∈ {0, 1}n, (2diag(a)− aaT ) • Y ≤ 1 is a feasible
inequality for Y ∈ COR.

◮ Suffices to check slack for Y = bbT .

1− 2·

1
1
1
1
0
0
0
0

supp(a)

•

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

supp(b)

+ 1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

supp(a)

•

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

supp(b)

= 1− 2|a ∩ b|+ |a ∩ b|2 = (1− |a ∩ b|)2 ≥ 0
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b

slack matrix S

(1− |a ∩ b|)2 (2diag(a)− aaT ) • Y ≤ 1

P

b

b b

b

COR

bbT



Correlation polytope (3)

a

b

slack matrix S

(1− |a ∩ b|)2 (2diag(a)− aaT ) • Y ≤ 1
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Observations:

◮ S is a submatrix of the “real” slack-matrix



Correlation polytope (3)

a

b

slack matrix S

(1− |a ∩ b|)2 (2diag(a)− aaT ) • Y ≤ 1

P

b

b b

b

COR

bbT

Observations:

◮ S is a submatrix of the “real” slack-matrix

◮ We have

Sab =

{

1 |a ∩ b| = 0

0 |a ∩ b| = 1



Incomplete slack matrices

Lemma

For a polytope P = {x | Ax ≤ b} and X = {x1, . . . , xv} ⊆ P
define a matrix S with Si,j := bi −Aixj . Then

rk≥0(S) = min{xc(Q) : X ⊆ Q ⊆ P}

P
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b

conv(X)
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For a polytope P = {x | Ax ≤ b} and X = {x1, . . . , xv} ⊆ P
define a matrix S with Si,j := bi −Aixj . Then

rk≥0(S) = min{xc(Q) : X ⊆ Q ⊆ P}

Q

P

b

b b

b

conv(X)
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Correlation polytope (3)

S
1

1
1

1
1

a

b

Sab =

{

1 |a ∩ b| = 0

0 |a ∩ b| = 1

◮ Define disjoint pairs P0 := {(a, b) : |a ∩ b| = 0}

Claim

|P0| = 3n.

◮ For disjoint pair (a, b), for coordinate i there are 3 options
◮ ai = 0, bi = 0
◮ ai = 1, bi = 0
◮ ai = 0, bi = 1
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S

1

1
1

1
1

0

0

0

0
0

R
a

b

Sab =

{

1 |a ∩ b| = 0

0 |a ∩ b| = 1

◮ disjoint pairs P0 := {(a, b) : |a ∩ b| = 0}
◮ forbidden pairs P1 := {(a, b) : |a ∩ b| = 1}

Lemma

Any rectangle R without forbidden pairs has |R ∩ P0| ≤ 2n.

◮ By rectangle covering lower bound

xc(COR) ≥
|P0|

2n
=

(
3

2

)n
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R

R1

R2a

a ∪ {1} 1

1

b b ∪ {1}

1

0

◮ Define rectangles R1 = {(a, b) ∈ R : 1 /∈ b} and
R2 = {(a, b) ∈ R : 1 /∈ a}

◮ All entries in P0 covered

◮ Delete symbol 1 from all tuples and apply induction

|P0∩R| ≤ |P0(n−1)∩R1|+ |P0(n−1)∩R2| ≤ 2 ·2n−1 = 2n

◮ Good news: No forbidden pairs created!

◮ Potential problem: Diff. tuples collapse to the same one



The end

Thanks for your attention


