

Between Discrete and Continuous Optimization: Submodularity & Optimization

Stefanie Jegelka, MIT Simons Bootcamp Aug 2017

Submodularity

- submodularity = "diminishing returns" $\forall S \subseteq T, a \notin T$
- $F(S \cup \{a\}) F(S) > F(T \cup \{a\}) F(T)$

Submodularity

set function: *F*(*S*)

• diminishing returns: $\forall S \subseteq T, a \notin T$

$$
\left[F(S \cup \{a\}) \right] - \left(F(S) \right) \geq \left(\left[F(T \cup \{a\}) \right] - \left(F(T) \right) \right]
$$

• equivalent general definition: $\forall A, B \subseteq V$

$$
\left[F(A) \right] + \left[F(B) \right] \ge \left[F(A \cup B) \right] + \left[F(A \cap B) \right]
$$

Why is this interesting?

Importance of convex functions *(Lovász, 1983):*

- *• "occur in many models in economy, engineering and other sciences", "often the only nontrivial property that can be stated in general"*
- *• preserved under many operations and transformations: larger effective range of results*
- *• sufficient structure for a "mathematically beautiful and practically useful theory"*
- *• efficient minimization*

"It is less apparent, but we claim and hope to prove to a certain extent, that a similar role is played in discrete optimization by *submodular set-functions" […]*

Examples of submodular set functions

- linear functions
- discrete entropy
- discrete mutual information
- matrix rank functions
- matroid rank functions ("combinatorial rank")
- coverage
- diffusion in networks
- volume (by log determinant)
- graph cuts
- …

Roadmap

• Optimizing submodular set functions: discrete optimization via continuous optimization

• Submodularity more generally: continuous optimization via discrete optimization

• Further connections

Roadmap

• Optimizing submodular set functions via continuous optimization

Key Question: Submodularity = Discrete Convexity or Discrete Concavity? *(Lovász, Fujishige, Murota, …)*

Continuous extensions

min $S\subseteq V$ $F(S)$ \Leftrightarrow min *x*2*{*0*,*1*}ⁿ* \Leftrightarrow $\min_{x \in \mathcal{F}(0,1], n} F(x)$

• LP relaxation? nonlinear cost function: exponentially many variables…

$$
F: \{0,1\}^n \to \mathbb{R} \longrightarrow \mathbb{R} \longrightarrow f: [0,1]^n \to \mathbb{R}
$$

Nonlinear extensions & optimization

nonlinear extension/optimization

• Define probability measure over *subsets* (joint over coordinates) such that marginals agree with *z*:

$$
\mathbb{P}(i \in S) = z_i
$$

- Extension:
- for discrete *z*: $f(z) = F(z)$

$$
f(z) = \mathbb{E}[F(S)]
$$

Independent coordinates

$$
P(S) = \prod_{i \in S} z_i \cdot \prod_{j \notin S} (1 - z_j)
$$

- $f(z)$ is a multilinear polynomial: *multilinear extension*
- neither convex nor concave…

Lovász extension

$$
f(z) = \mathbb{E}[F(S)]
$$
 $\mathbb{P}(i \in S) = z_i$

$$
\mathbb{P}(i \in S) = z_i
$$

• "coupled" distribution defined by level sets

$$
S_0 = \{\}, S_1 = \{d\}, S_2 = \{a, b, d\},
$$

$$
S_3 = \{a, b, c, d\}
$$

 $d \mid a \mid b$ $\qquad \qquad \mathbb{E}[F(S)] =$ Choquet integral of F

Theorem (Lovász 1983) $f(z)$ is convex iff $F(S)$ is submodular.

Convexity and subgradients

if *F* is submodular *(Edmonds 1971, Lovász 1983)*:

a

b

c

d

 0.6 $\widetilde{\mathcal{E}}_{0.4}$

 $0.2[°]$

 $0⁻¹$

- can compute subgradient of *f(z) in O(n log n)*
- rounding: use one of the level sets of *z**

Submodular minimization: a brief overview

min

f(*z*)

 $z \in [0,1]^n$

convex optimization

- ellipsoid method *(Grötschel-Lovász-Schrijver 81)*
- subgradient method *(improved: Chakrabarty-Lee-Sidford-Wong 16)*

combinatorial optimization

• network flow based *(Schrijver 00, Iwata-Fleischer-Fujishige-01)* $O(n^4T + n^5\log M)$ *(Iwata 03),* $O(n^6 + n^5T)$ *(Orlin 09)*

convex + combinatorial

• cutting planes *(Lee-Sidford-Wong 15)* $O(n^2T \log nM + n^3 \log^c nM)$ $O(n^3T \log^2 n + n^4 \log^c n)$

How far does relaxation go?

• **strongly convex** version:

- Fujishige-Wolfe / minimum-norm point algorithm
- actually solves *parametric submodular minimization*
- **But:** no relaxation is tight for constrained minimization typically hard to approximate

Submodular maximization

$$
\max_{S \subseteq V} F(S) \qquad \max_{|S| \le k} F(S) \quad * \qquad \textbf{NP-hard}
$$

- simple cases *(*, monotone)*: discrete greedy algorithm is optimal *(Nemhauser-Wolsey-Fisher 1972)*
- more complex cases *(complicated constraints, non-monotone)*: continuous extension + rounding

Independent coordinates

 $i \in S$ *j* $\notin S$

 $\overline{\Pi}$

$$
f(z) = \mathbb{E}[F(S)]
$$

$$
P(S) = \prod_{i \in S} z_i
$$

•
$$
\frac{\partial^2 f}{\partial x_i \partial x_j} \leq 0 \quad \text{for all } i, j
$$

- $f(z)$ concave in increasing directions *(diminishing returns)*
- $f(z)$ convex in "swap" directions
- continuous maximization (monotone): despite nonconvexity! *(Calinescu-Chekuri-Pal-Vondrak 2007, Feldman-Naor-Schwartz 2011,…, Hassani-Soltanolkotabi-Karbasi 2017, …)*
- similar approach for non-monotone functions *(Buchbinder-Naor-Feldman 2012,…)*

"Continuous greedy" as Frank-Wolfe

• concavity in positive directions: for all $z \in [0,1]^n$ there is a $v \in P$:

 $\langle v, \nabla f(z) \rangle \ge \text{OPT} - f(z)$

Initialize: $z^0 = 0$ for $t=1, \ldots$ T: $s^t \in \arg \max_{s \in P} \langle s, \nabla f(z^t) \rangle$ $z^{t+1} = z^t + \alpha_t s^t$

• Analysis:

$$
f(z^{t+1}) \ge f(z^t) + \alpha \langle s^t, \nabla f(z^t) \rangle - \frac{C}{2} \alpha^2
$$

$$
\ge f(z^t) + \alpha [\text{OPT} - f(z^t)] - \frac{C}{2} \alpha^2
$$

 \Rightarrow OPT $-f(z^{t+1}) \leq (1-\alpha)[\text{OPT} - f(z^t)] + \frac{C}{2}\alpha^2$

• with $\alpha = 1/T$

 $f(z^T) \ge (1 - (1 - \frac{1}{T})^T) \text{OPT} - \frac{C}{2T}$

Binary / Set function optimization

- exact convex relaxation
- Lovász extension
- But: constrained is hard
- **convexity**
- NP-hard
- But: constant-factor approximations for constraints
- multilinear extension
- diminishing returns

Roadmap

• Optimizing submodular set functions: discrete optimization via continuous optimization

• Submodularity more generally: continuous optimization via discrete optimization

• Further connections

Submodularity beyond sets

- sets: for all subsets $A, B \subseteq V$ $F(A) + F(B) \geq F(A \cup B) + F(A \cap B)$
- replace sets by vectors:

$$
F(x) + F(y) \ge F(x \vee y) + F(x \wedge y)
$$

• or: Hessian has all off-diagonals <= 0. *(Topkis 1978)*

$$
\frac{\partial^2 F}{\partial x_i \partial x_j} \le 0 \qquad \forall i \ne j
$$

Examples

 ≤ 0

 ≤ 0

 $F(x) + F(y) \geq F(x \vee y) + F(x \wedge y)$

submodular function can be convex, concave or neither!

- any separable function $F(x) = \sum_{i=1}^{n}$ *i*=1 $F_i(x_i)$
- $F(x) = g(x_i x_j)$ for concave g
- $F(x) = h\left(\sum_i x_i\right)$ for convex $\sqrt{ }$ *i* x_i) for convex h

Maximization

- General case: diminishing returns stronger than submodularity
- DR-submodular function:

 $\partial^2 F/\partial x_i \partial x_j \leq 0$ for all *i*, *j*

• with DR, many results generalize (including "continuous greedy") *(Kapralov-Post-Vondrák 2010, Soma et al 2014-15, Ene & Nguyen 2016, Bian et al 2016, Gottschalk & Peis 2016)*

Minimization

- $\bullet~$ discretize continuous functions: factor $O(1/\epsilon)$
- Option 1: transform into set function optimization

(Birkhoff 1937, Schrijver 2000, Orlin 2007) better for DR-submodular *(Ene & Nguyen 2016)*

• Option II: convex extension for integer submodular function *(Bach 2015)*

Convex extension

 $f(z) = \mathbb{E}[F(x)]$

• **Integer vectors:** distribution over *{0,…k}* for each coordinate

1	$F: \{0, \ldots k\}^n \to \mathbb{R}$
0	1
2	2

Applications

• robust optimization of bipartite influences *(Staib-Jegelka 2017)*

$$
\max_{y\in\mathcal{B}}\min_{p\in\mathcal{P}}\mathcal{I}(y;p) \qquad \qquad \sum_{p=1}^{p_{st}}
$$

• non-convex isotonic regression *(Bach 2017)*

$$
\min_{x \in [0,1]^n} \sum_{i=1}^n G(x_i - z_i) \quad \text{s.t. } x_i \ge x_i \,\forall (i,j) \in E
$$

Roadmap

• Optimizing submodular set functions: discrete optimization via continuous optimization

• Submodularity more generally: continuous optimization via discrete optimization

• Further connections

Log-sub/supermodular distributions

 $P(S) \propto \exp(F(S))$ *P*(*x*) $\propto \exp(F(x))$

• *-F(S)* submodular: multivariate totally positive, FKG lattice condition

 $P(S) P(T) \leq P(S \cup T) P(S \cap T)$

- implies *positive association*: for all monotonically increasing *G,H*: $\mathbb{E}[G(S)H(S)] \geq \mathbb{E}G(S)\mathbb{E}H(S)$
- F(S) submodular?

 $P(S) P(T) \geq P(S \cup T) P(S \cap T)$

Negative association and stable polynomials

• sub-class satisfies *negative association*: for all monotonically increasing *G,H with disjoint support:*

 $\mathbb{E}[G(S)H(S)] \leq \mathbb{E}G(S)\mathbb{E}H(S)$

• Condition implies conditionally negative association:

$$
q(z) = \sum_{S \subseteq V} P(S) \prod_{i \in S} z_i, \quad z \in \mathbb{C}^n
$$

should be *real stable. Strongly Rayleigh measures (Borcea, Bränden, Liggett 2009)*

Implications

- Concentration of measure *(Pemantle-Peres 2011)*
- *P(|S|)* log-concave
- Fast-mixing Markov Chains *(Feder-Mihail 1982, …, Anari-Oveis-Gharan-Rezaei 2016, Li-Sra-Jegelka 2016)*
- Approximate partition functions / counting and optimization *(Gurvits 2006, Nikolov-Singh 2016, Straszak-Vishnoi 2016, …)*

Summary

Optimizing submodular set functions: discrete optimization via continuous optimization

- extensions via expectations
- convex and partially concave

Further connections:

- Submodularity more generally: continuous optimization via discrete optimization
- Negative dependence and stable polynomials