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Submodularity

• submodularity = “diminishing returns”

S

set function: F (S)

F (S [ {a}) � F (S) � F (T [ {a}) � F (T )

8S ✓ T, a /2 T

V



Submodularity

• diminishing returns:

• equivalent general definition: 

set function: F (S)

F (S [ {a}) � F (S) � F (T [ {a}) � F (T )

8S ✓ T, a /2 T

8 A,B ✓ V

F (A) + F (B) � F (A [B) + F (A \B)



Why is this interesting?
Importance of convex functions (Lovász, 1983):

• “occur in many models in economy, engineering and other 
sciences”, “often the only nontrivial property that can be 
stated in general”

• preserved under many operations and transformations: larger 
effective range of results

• sufficient structure for a “mathematically beautiful and 
practically useful theory”

• efficient minimization

“It is less apparent, but we claim and hope to prove to a certain 
extent, that a similar role is played in discrete optimization by 
submodular set-functions“ […]  



Examples of submodular set functions

• linear functions

• discrete entropy

• discrete mutual information

• matrix rank functions

• matroid rank functions (“combinatorial rank”)

• coverage

• diffusion in networks

• volume (by log determinant)

• graph cuts

• …



Roadmap

• Optimizing submodular set functions:  
discrete optimization via continuous optimization 
 

• Submodularity more generally:  
continuous optimization via discrete optimization 
 

• Further connections



Roadmap

• Optimizing submodular set functions  
via continuous optimization 
 
 

Key Question:  
Submodularity = Discrete Convexity or Discrete Concavity? 
(Lovász, Fujishige, Murota, …)



Continuous extensions

• LP relaxation? 
nonlinear cost function: exponentially many variables… 

min
S✓V

F (S) min
x2{0,1}n

F (x),

F : {0, 1}n ! R f : [0, 1]n ! R



nonlinear extension/optimization

Nonlinear extensions & optimization

F : {0, 1}n ! R f : [0, 1]n ! R

min
x2C✓{0,1}n

F (x) min
z2conv(C)✓[0,1]n

f(z)



Generic construction

• Define probability measure over subsets (joint over 
coordinates) such that marginals agree with z:  
 

• Extension:  

• for discrete z: 

P(i 2 S) = zi
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F : {0, 1}n ! R f : [0, 1]n ! R



Independent coordinates

•          is a multilinear polynomial: multilinear extension  

• neither convex nor concave…

f(z) = E[F (S)]

P (S) =
Y

i2S

zi ·
Y

j /2S

(1� zj)

f(z)
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Lovász extension

• “coupled” distribution defined by level sets

Theorem (Lovász 1983)  
        is convex iff          is submodular.

f(z) = E[F (S)] P(i 2 S) = zi
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Convexity and subgradients
if F is submodular (Edmonds 1971, Lovász 1983):

 

• can compute subgradient of f(z) in O(n log n)

• rounding: use one of the level sets of z*  

  
exact convex relaxation!
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f(z) = E[F (S)] = max

s2BF

hs, zi

Base Polytope of F

=min
S✓V

F (S) min
z2[0,1]n

f(z)



Submodular minimization: a brief overview

convex optimization 

• ellipsoid method (Grötschel-Lovász-Schrijver 81)

• subgradient method (improved: Chakrabarty-Lee-Sidford-Wong 16)

combinatorial optimization 

• network flow based (Schrijver 00, Iwata-Fleischer-Fujishige-01)    
                                      (Iwata 03),                             (Orlin 09)

convex + combinatorial 

• cutting planes (Lee-Sidford-Wong 15)

O(n4T + n5
logM) O(n6 + n5T )

O(n2T log nM + n3
log

c nM) O(n3T log

2 n+ n4
log

c n)

min
z2[0,1]n

f(z)



How far does relaxation go?
• strongly convex version:

 
 

• Fujishige-Wolfe / minimum-norm point algorithm

• actually solves parametric submodular minimization

• But: no relaxation is tight for constrained minimization 
typically hard to approximate

min
z2[0,1]n

f(z) min
z2Rn

f(z)+ 1
2kzk

2

min
s2BF

1
2ksk

2dual:



• simple cases (*, monotone):  
discrete greedy algorithm is optimal (Nemhauser-Wolsey-Fisher 1972)

• more complex cases (complicated constraints, non-monotone): 
continuous extension + rounding

Submodular maximization

F : {0, 1}n ! R f : [0, 1]n ! R

max

S✓V
F (S) max

|S|k
F (S) NP-hard*

concave envelope is intractable, but …



Independent coordinates

•                    for all i,j 

•         concave in increasing directions  
(diminishing returns)

•         convex in “swap” directions

• continuous maximization (monotone): despite nonconvexity! 
(Calinescu-Chekuri-Pal-Vondrak 2007, Feldman-Naor-Schwartz 2011,…, Hassani-Soltanolkotabi-
Karbasi 2017, …)

• similar approach for non-monotone functions  
(Buchbinder-Naor-Feldman 2012,…)

f(z) = E[F (S)] P (S) =
Y

i2S

zi ·
Y

j /2S

(1� zj)

f(z)

f(z)
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“Continuous greedy” as Frank-Wolfe

• concavity in positive directions:  
for all                there is a         :  

• Analysis:  
 
 
 
 
 

• with 

Initialize: z0 = 0

for t=1, . . . T:

st 2 argmax

s2P
hs,rf(zt)i

zt+1
= zt + ↵ts

t

z 2 [0, 1]n v 2 P

hv,rf(z)i � OPT� f(z)

f(zt+1) � f(zt) + ↵hst,rf(zt)i � C
2 ↵

2

� f(zt) + ↵[OPT� f(zt)]� C
2 ↵

2

↵ = 1/T

f(zT ) � (1� (1� 1
T )

T )OPT� C
2T

) OPT� f(zt+1)  (1� ↵)[OPT� f(zt)] + C
2 ↵

2



Binary / Set function optimization

• exact convex relaxation
• Lovász extension

• But: constrained is hard

• convexity

• NP-hard
• But: constant-factor approxi- 

mations for constraints
• multilinear extension
• diminishing returns



Roadmap

• Optimizing submodular set functions:  
discrete optimization via continuous optimization 
 

• Submodularity more generally:  
continuous optimization via discrete optimization 
 

• Further connections



Submodularity beyond sets
• sets: for all subsets 
 

• replace sets by vectors:  
 
 

• or: Hessian has all off-diagonals <= 0. (Topkis 1978)

F (x) + F (y) � F (x _ y) + F (x ^ y)

F (A) + F (B) � F (A [B) + F (A \B)

A,B ✓ V

@

2
F

@xi@xj
 0



Examples

• any separable function

•                               for concave

•                               for convex   

F (x) + F (y) � F (x _ y) + F (x ^ y)

F (x) =
Xn

i=1
Fi(xi)

F (x) = g(xi � xj) g

F (x) = h

�X
i
xi

�
h

submodular function can be  
convex, concave or neither!

@

2
F

@xi@xj
 0



Maximization
• General case:  

diminishing returns stronger than submodularity

• DR-submodular function:

• with DR, many results generalize  
(including “continuous greedy”)  
(Kapralov-Post-Vondrák 2010, Soma et al 2014-15, Ene & Nguyen 2016, Bian et al 2016, 
Gottschalk & Peis 2016)

@

2
F/@xi@xj  0 i, jfor all



Minimization
• discretize continuous functions: factor 

• Option 1:  
transform into set function optimization  
(Birkhoff 1937, Schrijver 2000, Orlin 2007) 
better for DR-submodular 
(Ene & Nguyen 2016)

• Option II:  
convex extension for integer submodular 
function (Bach 2015)

O(1/✏)



Convex extension
• Set functions: efficient minimization via convex extension  
 
 
 
 
 

• Integer vectors: distribution over {0,…k} for each coordinate

F : {0, 1}n ! R f : [0, 1]n ! R
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F : {0, . . . k}n ! R

f(z) = E[F (S)]

f(z) = E[F (x)]



Applications
• robust optimization of bipartite influences (Staib-Jegelka 2017) 
 
 
 
 

• non-convex isotonic regression (Bach 2017)

max

y2B
min

p2P
I(y; p) pst

min
x2[0,1]n

nX

i=1

G(x
i

� z

i

) s.t. x
i

� x

i

8(i, j) 2 E



Roadmap

• Optimizing submodular set functions:  
discrete optimization via continuous optimization 
 

• Submodularity more generally:  
continuous optimization via discrete optimization 
 

• Further connections



Log-sub/supermodular distributions

• -F(S) submodular: multivariate totally positive,  
FKG lattice condition  

• implies positive association:  
for all monotonically increasing G,H:  
 

• F(S) submodular?

P (S) / exp(F (S)) P (x) / exp(F (x))

E[G(S)H(S)] � EG(S)EH(S)



Negative association and stable polynomials

• sub-class satisfies negative association:  
for all monotonically increasing G,H with disjoint support:  

• Condition implies conditionally negative association:  
 
 
 
should be real stable.   Strongly Rayleigh measures  
(Borcea, Bränden, Liggett 2009) 
 

E[G(S)H(S)]  EG(S)EH(S)

q(z) =
X

S✓V

P (S)
Y

i2S

zi, z 2 Cn



Implications
• Concentration of measure (Pemantle-Peres 2011)

• P(|S|) log-concave

• Fast-mixing Markov Chains 
(Feder-Mihail 1982, …, Anari-Oveis-Gharan-Rezaei 2016, Li-Sra-Jegelka 2016)

• Approximate partition functions / counting and 
optimization 
(Gurvits 2006, Nikolov-Singh 2016, Straszak-Vishnoi 2016, …)

• …



Summary
Optimizing submodular set functions:  
discrete optimization via continuous optimization 

• extensions via expectations

• convex and partially concave 

Further connections: 

• Submodularity more generally:  
continuous optimization via discrete optimization

• Negative dependence and stable polynomials


