How to Escape Saddle Points Efficiently

Chi Jin*, Rong Ge[¶], Praneeth Netrapalli[‡], Sham M. Kakade[‡], Michael I. Jordan^{*}

* UC Berkeley

¶ Duke University

+ Microsoft Research India

* University of Washington, Seattle

Non-convex optimization

Problem: $\min_{x} f(x) = f(\cdot)$: non-convex function

Applications: Matrix/tensor factorization, Distribution learning, neural networks,...

```
Gradient descent (GD)
```

Problem: $\min_{x} f(x)$

Gradient descent: $x_{t+1} = x_t - \eta \cdot \nabla f(x_t)$ Stepsize Gradient

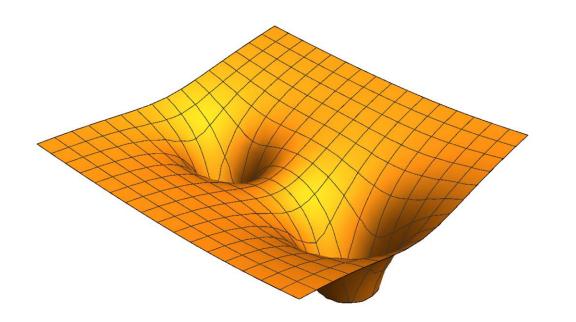
GD for smooth non-convex functions

- Smoothness: $\|\nabla f(x) \nabla f(y)\| \le \ell \|x y\|$
- Global optimum may not be achievable in general

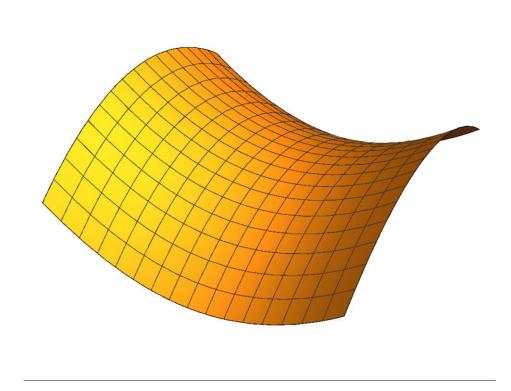
•
$$\|\nabla f(x_t)\| < \epsilon$$
 in $t = O\left(\frac{\ell(f(x_0) - f^*)}{\epsilon^2}\right)$ (Nesterov 1998)
 ϵ - first order stationary point $f^* \stackrel{\text{def}}{=} \min_x f(x)$

First-order stationary points

Local minima



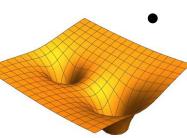
Saddle points/local maxima



First-order stationary points

In many applications such as PCA, matrix completion, dictionary learning etc.

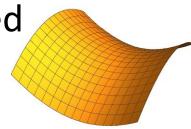
Local minima



- Either all local minima <u>are</u> global minima
- Or all local minima <u>as</u> good as global minima

Saddle points

<u>Very poor</u> compared to global minima



• <u>Several</u> such points

First-order stationary points

In many applications such as PCA, matrix completion, dictionary learning etc.

Bottomline: Local minima much more desirable than saddle points

However, gradient descent can indeed converge to saddle points.

Can gradient descent escape saddle points?

• By adding noise -- best known results poly(d) (Ge et al. 2015)

Question: How to escape saddle points efficiently?

Second-order stationary points

- Smoothness: $\|\nabla f(x) \nabla f(y)\| \le \ell \|x y\|$
- Hessian Lipschitz: $\|\nabla^2 f(x) \nabla^2 f(y)\| \le \rho \|x y\|$
- x an ϵ -second order stationary point if (Nesterov and Polyak 2006)

$$\|\nabla f(x)\| \le \epsilon$$
 and $\lambda_{\min}(\nabla^2 f(x)) \ge -\sqrt{\rho\epsilon}$

Our result

Perturbed gradient descent finds ϵ -second order stationary point

in
$$t = \tilde{O}\left(\frac{\ell(f(x_0) - f^*)}{\epsilon^2}\right)$$

- Second order stationary point instead of first order stationary point
- In essentially the same amount of time as gradient descent finds first order stationary point

Perturbed gradient descent

1. For $t = 0, 1, \dots$ do 2. if perturbation_condition_holds then 3. $x_t \leftarrow x_t + \xi_t$ where $\xi_t \sim Unif(B_0(\epsilon/\ell))$ 4. $x_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$

- 1. $\nabla f(x_t)$ is small
- 2. No perturbation in last several iterations

Recall second order stationary point

Proof idea

 $\|\nabla f(x)\| \le \epsilon$ $\lambda_{\min} (\nabla^2 f(x)) \ge -\sqrt{\rho \epsilon}$

• Case I: $\|\nabla f(x_t)\| > \epsilon$ Smoothness Stepsize $\eta = \frac{1}{\ell}$ $\Rightarrow f(x_{t+1}) \le f(x_t) - \frac{1}{2\ell} \|\nabla f(x_t)\|^2$ $\le f(x_t) - \frac{1}{2\ell} \epsilon^2$

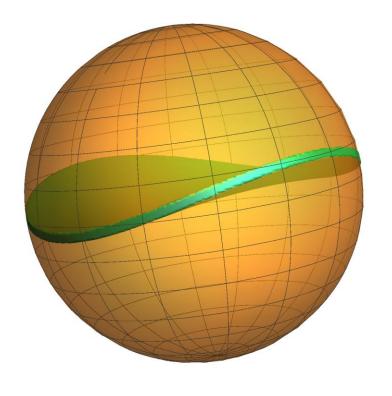
• Case II: $\|\nabla f(x_t)\| \le \epsilon$ and $\lambda_{\min}(\nabla^2 f(x_t)) < -\sqrt{\rho\epsilon}$ $x_t \sim \text{saddle point}$

How do we escape from here?

Geometry around saddle points

 $S \stackrel{\text{def}}{=} \text{set of points around saddle}$ point from where gradient descent does not escape saddle point.

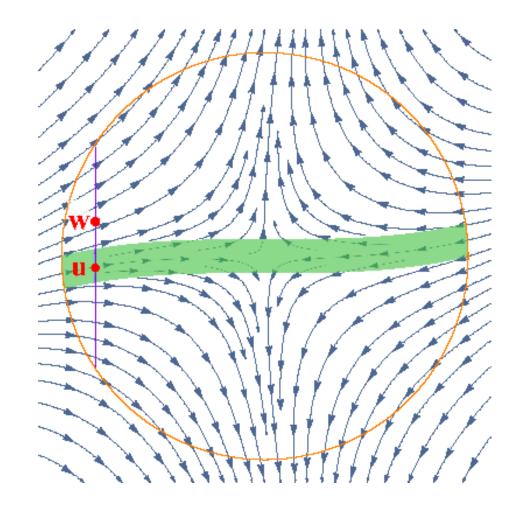
> Key technical result Vol(S) is small



Geometry around saddle points

 $S \stackrel{\text{def}}{=}$ set of points around saddle point from where gradient descent does not escape saddle point.

> Key technical result Vol(S) is small



Recap

- Gradient descent converges to first order stationary points
- Perturbed gradient descent converges to second order stationary points
- Depends only logarithmically on dimension
- Key idea: understand structure around saddle points

Further results using local structure

- Strict saddle property: Every saddle point has a strictly negative eigenvalue
 - PCA, CCA, matrix sensing/completion, dictionary learning, orthogonal tensor decomposition etc.
 - Converge to local minima
- Local strong convexity
 - PCA, CCA, matrix factorization
 - Local geometric convergence

Conclusions

- (Gradient descent + a little randomness) can escape saddle points
- In fact, efficiently. Only polylog(d) dependence.
- Key ingredient: understand geometry around saddle points

Some open directions

- Is randomness in the beginning sufficient?
- Do momentum methods help accelerate for non-convex problems?
- Extensions to the stochastic case