How to Escape Saddle Points Efficiently

Chi Jin*, Rong Ge[¶], Praneeth Netrapalli[‡], Sham M. Kakade^{*}, Michael I. Jordan*

* UC Berkeley

¶ Duke University

- ǂ Microsoft Research India
- ⁑ University of Washington, Seattle

Non-convex optimization

min \mathcal{X} Problem: $\min f(x)$ $f(\cdot)$: non-convex function

Applications: Matrix/tensor factorization, Distribution learning, neural networks,…

```
Gradient descent (GD)
```
Problem: $\min f(x)$ \mathcal{X}

Gradient descent: $x_{t+1} = x_t - \eta \cdot \nabla f(x_t)$ Stepsize Gradient

GD for smooth non-convex functions

- Smoothness: $||\nabla f(x) \nabla f(y)|| \leq \ell ||x y||$
- Global optimum may not be achievable in general

•
$$
||\nabla f(x_t)|| < \epsilon
$$
 in $t = O\left(\frac{\ell(f(x_0) - f^*)}{\epsilon^2}\right)$ (Nesterov 1998)
\n
\n
\n*ε*- first order stationary point $f^* \stackrel{\text{def}}{=} \min_f(x)$

First-order stationary points

Local minima \vert Saddle points/local maxima

First-order stationary points

In many applications such as PCA, matrix completion, dictionary learning etc.

Local minima Local minima

- Either all local minima are global minima
- Or all local minima as good as global minima

• Very poor compared to global minima

Several such points

First-order stationary points

In many applications such as PCA, matrix completion, dictionary learning etc.

Bottomline: Local minima much more desirable than saddle points

However, gradient descent can indeed converge to saddle points.

Can gradient descent escape saddle points?

• By adding noise -- best known results $poly(d)$ (Ge et al. 2015)

Question: How to escape saddle points efficiently?

Second-order stationary points

• Smoothness: $||\nabla f(x) - \nabla f(y)|| \leq \ell ||x - y||$

• Hessian Lipschitz:
$$
\left\| \nabla^2 f(x) - \nabla^2 f(y) \right\| \le \rho \|x - y\|
$$

• x an ϵ -second order stationary point if (Nesterov and Polyak 2006)

$$
\|\nabla f(x)\| \le \epsilon \qquad \text{and} \qquad \lambda_{\min} \big(\nabla^2 f(x)\big) \ge -\sqrt{\rho \epsilon}
$$

Our result

Perturbed gradient descent finds ϵ -second order stationary point

in
$$
t = \tilde{O}\left(\frac{\ell(f(x_0) - f^*)}{\epsilon^2}\right)
$$

- Second order stationary point instead of first order stationary point
- In essentially the same amount of time as gradient descent finds first order stationary point

Perturbed gradient descent

1. **For** $t = 0, 1, \cdots$ do 2. **if** perturbation_condition_holds **then** 3. $x_t \leftarrow x_t + \xi_t$ where $\xi_t \sim Unif(B_0(\epsilon/\ell))$ 4. $x_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$

- 1. $\nabla f(x_t)$ is small
- 2. No perturbation in last several iterations

Recall second order stationary point

Proof idea

 $||\nabla f(x)|| \leq \epsilon$ $\lambda_{\min}(\nabla^2 f(x)) \geq -\sqrt{\rho \epsilon}$

• Case I: $\|\nabla f(x_t)\| > \epsilon$ Smoothness $\big| \Rightarrow f(x_{t+1}) \leq f(x_t) -$ 1 $\frac{1}{2\ell} \|\nabla f(x_t)\|^2$ Stepsize $\eta =$ 1 ℓ $\leq f(x_t)$ – 1 $\frac{1}{2\ell}$ ϵ^2

• Case II: $\|\nabla f(x_t)\| \leq \epsilon$ and $\lambda_{\min}(\nabla^2 f(x_t)) < -\sqrt{\rho \epsilon}$ $x_t \sim$ saddle point

How do we escape from here?

Geometry around saddle points

 $S \stackrel{\text{def}}{=}$ set of points around saddle point from where gradient descent does not escape saddle point.

> Key technical result $Vol(S)$ is small

Geometry around saddle points

 $S \stackrel{\text{def}}{=}$ set of points around saddle point from where gradient descent does not escape saddle point.

> Key technical result $Vol(S)$ is small

Recap

- Gradient descent converges to first order stationary points
- Perturbed gradient descent converges to second order stationary points
- Depends only logarithmically on dimension
- Key idea: understand structure around saddle points

Further results using local structure

- Strict saddle property: Every saddle point has a strictly negative eigenvalue
	- PCA, CCA, matrix sensing/completion, dictionary learning, orthogonal tensor decomposition etc.
	- Converge to local minima
- Local strong convexity
	- PCA, CCA, matrix factorization
	- Local geometric convergence

Conclusions

- (Gradient descent + a little randomness) can escape saddle points
- In fact, efficiently. Only $\text{polylog}(d)$ dependence.
- Key ingredient: understand geometry around saddle points

Some open directions

- Is randomness in the beginning sufficient?
- Do momentum methods help accelerate for non-convex problems?
- Extensions to the stochastic case