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Non-convex optimization

min
𝑥

𝑓 𝑥Problem: 𝑓 ⋅ : non-convex function

Applications: Matrix/tensor factorization, 
Distribution learning, neural networks,…



Gradient descent (GD)

min
𝑥

𝑓 𝑥Problem:

Gradient descent: 𝑥𝑡+1 = 𝑥𝑡 − 𝜂 ⋅ 𝛻𝑓 𝑥𝑡

Stepsize Gradient



GD for smooth non-convex functions

• Smoothness: 𝛻𝑓 𝑥 − 𝛻𝑓 𝑦 ≤ ℓ 𝑥 − 𝑦

• Global optimum may not be achievable in general

• 𝛻𝑓 𝑥𝑡 < 𝜖 in 𝑡 = 𝑂
ℓ 𝑓 𝑥0 −𝑓∗

𝜖2
(Nesterov 1998)

𝑓∗ ≝ min
𝑥

𝑓 𝑥𝜖- first order stationary point



First-order stationary points

Local minima Saddle points/local maxima



First-order stationary points

Local minima Saddle points

• Either all local minima 
are global minima

• Or all local minima as 
good as global minima

• Very poor compared 
to global minima

• Several such points

In many applications such as PCA, matrix completion, dictionary 
learning etc.



First-order stationary points

In many applications such as PCA, matrix completion, dictionary 
learning etc.

Bottomline: Local minima much more desirable than saddle points

However, gradient descent can indeed converge to saddle points.

Can gradient descent escape saddle points?
• By adding noise -- best known results poly(𝑑) (Ge et al. 2015)

Question: How to escape saddle points efficiently?



Second-order stationary points

• Smoothness: 𝛻𝑓 𝑥 − 𝛻𝑓 𝑦 ≤ ℓ 𝑥 − 𝑦

• Hessian Lipschitz: 𝛻2𝑓 𝑥 − 𝛻2𝑓 𝑦 ≤ 𝜌 𝑥 − 𝑦

• 𝑥 an 𝜖-second order stationary point if (Nesterov and Polyak 2006)

𝛻𝑓 𝑥 ≤ 𝜖 and 𝜆min 𝛻2𝑓 𝑥 ≥ − 𝜌𝜖



Our result

Perturbed gradient descent finds 𝜖-second order stationary point 

in 𝑡 = ෨𝑂
ℓ 𝑓 𝑥0 −𝑓∗

𝜖2

• Second order stationary point instead of first order stationary 
point

• In essentially the same amount of time as gradient descent 
finds first order stationary point



Perturbed gradient descent

1. For 𝑡 = 0,1,⋯ do

2. if perturbation_condition_holds then

3. 𝑥𝑡 ← 𝑥𝑡 + 𝜉𝑡 where 𝜉𝑡 ∼ 𝑈𝑛𝑖𝑓 𝐵0 𝜖/ℓ

4. 𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝛻𝑓 𝑥𝑡

1. 𝛻𝑓 𝑥𝑡 is small
2. No perturbation in last 

several iterations



Proof idea
Recall second order stationary point

𝛻𝑓 𝑥 ≤ 𝜖
𝜆min 𝛻2𝑓 𝑥 ≥ − 𝜌𝜖

• Case I: 𝛻𝑓 𝑥𝑡 > 𝜖

Smoothness ⇒ 𝑓 𝑥𝑡+1 ≤ 𝑓 𝑥𝑡 −
1

2ℓ
𝛻𝑓 𝑥𝑡

2

Stepsize 𝜂 =
1

ℓ
≤ 𝑓 𝑥𝑡 −

1

2ℓ
𝜖2

• Case II: 𝛻𝑓 𝑥𝑡 ≤ 𝜖 and 𝜆min 𝛻2𝑓 𝑥𝑡 < − 𝜌𝜖

𝑥𝑡 ∼ saddle point

How do we escape from here?



Geometry around saddle points

𝑆 ≝ set of points around saddle 
point from where gradient descent 
does not escape saddle point.

Key technical result

Vol 𝑆 is small



Geometry around saddle points

𝑆 ≝ set of points around saddle 
point from where gradient descent 
does not escape saddle point.

Key technical result

Vol 𝑆 is small



Recap

• Gradient descent converges to first order stationary points

• Perturbed gradient descent converges to second order stationary points

• Depends only logarithmically on dimension

• Key idea: understand structure around saddle points



Further results using local structure

• Strict saddle property: Every saddle point has a strictly negative 
eigenvalue
• PCA, CCA, matrix sensing/completion, dictionary learning, orthogonal tensor 

decomposition etc.

• Converge to local minima

• Local strong convexity
• PCA, CCA, matrix factorization

• Local geometric convergence



Conclusions

• (Gradient descent + a little randomness) can escape saddle points

• In fact, efficiently. Only polylog d dependence.

• Key ingredient: understand geometry around saddle points

• Is randomness in the beginning sufficient?

• Do momentum methods help accelerate for non-convex problems?

• Extensions to the stochastic case

Some open directions


