
Semi-Random Units for
Learning Neural Networks

with Guarantees
Bo Xie

Georgia Tech

Simons Institute Representation Learning Workshop

joint work with Yingyu Liang,

Kenji Kawaguchi and Le Song

Learning neural networks

�(u)

Neural networks are extremely successful in
learning many nonlinear functions

Most are trained with simple Stochastic
Gradient Descent (SGD)

Highly non-convex objective function

Why SGD work so well?

Learning neural networks

One-hidden-layer neural networks with ReLU activation

f(x) =
nX

k=1

vk�(w
>
k x)

L(f) =
1

2m

mX

l=1

(yl � f(xl))
2

Least-squares loss

Main results:

For “nice” neural weights, with high probability,
any stationary point is a global optimum

wk

vk

The structure of the gradient

@L

@wk
=

1

m

mX

l=1

(f(xl)� yl) vk�
0(w>

k xl)xl

Gradient w.r.t. first layer weights

The structure of the gradient

@L

@wk
=

1

m

mX

l=1

(f(xl)� yl) vk�
0(w>

k xl)xl

Gradient w.r.t. first layer weights

0

BBBB@

v1�
0(w>

1 x1)x1 · · · v1�
0(w>

1 xm)xm

· · · · · · · · ·
vk�

0(w>
k x1)x1 · · · vk�

0(w>
k xm)xm

· · · · · · · · ·
vn�

0(w>
n x1)x1 · · · vn�

0(w>
n xm)xm

1

CCCCA

1

m

0

@
f(x1)� y1

. . .

f(xm)� ym

1

A⇥

2

66664

@L
@w1

. . .
@L
@wk

. . .
@L
@wn

3

77775
=

The structure of the gradient

@L

@wk
=

1

m

mX

l=1

(f(xl)� yl) vk�
0(w>

k xl)xl

Gradient w.r.t. first layer weights

@L

@W
= D r

0

BBBB@

v1�
0(w>

1 x1)x1 · · · v1�
0(w>

1 xm)xm

· · · · · · · · ·
vk�

0(w>
k x1)x1 · · · vk�

0(w>
k xm)xm

· · · · · · · · ·
vn�

0(w>
n x1)x1 · · · vn�

0(w>
n xm)xm

1

CCCCA

1

m

0

@
f(x1)� y1

. . .

f(xm)� ym

1

A⇥

2

66664

@L
@w1

. . .
@L
@wk

. . .
@L
@wn

3

77775
=

The structure of the gradient

@L

@wk
=

1

m

mX

l=1

(f(xl)� yl) vk�
0(w>

k xl)xl

Gradient w.r.t. first layer weights

@L

@W
= D r

0

BBBB@

v1�
0(w>

1 x1)x1 · · · v1�
0(w>

1 xm)xm

· · · · · · · · ·
vk�

0(w>
k x1)x1 · · · vk�

0(w>
k xm)xm

· · · · · · · · ·
vn�

0(w>
n x1)x1 · · · vn�

0(w>
n xm)xm

1

CCCCA

1

m

0

@
f(x1)� y1

. . .

f(xm)� ym

1

A⇥

2

66664

@L
@w1

. . .
@L
@wk

. . .
@L
@wn

3

77775
=

non-singular?

The intuition

Key inequality

krk 1

sm(D)

����
@L

@W

����

training error minimum
singular value

norm of
gradient

The intuition

Key inequality

krk 1

sm(D)

����
@L

@W

����

Need to lower bound minimum singular value

Bounding the error

Key inequality

krk 1

sm(D)

����
@L

@W

����

Gn = D>D/n

Directly analyze the singular value

Need to lower bound minimum singular value

it is a function of the weights;
difficult to analyze

Bounding the error

Key inequality

krk 1

sm(D)

����
@L

@W

����

Gn = D>D/n G = Ew[Gn]

Directly analyze the singular value

Need to lower bound minimum singular value

introduce an intermediate variable
that has uniform weights

Bounding the error

Key inequality

krk 1

sm(D)

����
@L

@W

����

Gn = D>D/n G = Ew[Gn]

�m(Gn) � �m(G)| {z }
I. ideal spectrum

� kG�Gnk| {z }
II. discrepancy

Decompose into two parts

Directly analyze the singular value

Need to lower bound minimum singular value

Bounding the first term

Kernel function associated with ReLU

spherical harmonics
decomposition

Gij = Ew

⇥
�

0
(w

>
xi)�

0
(w

>
xj)

⇤
hxi, xji

=

✓
1

2

� arccos hxi, xji
2⇡

◆
hxi, xji

=

1X

u=1

�u�u(xi)�u(xj)

Bounding the first term

Kernel function associated with ReLU

With high probability

�m(G) � m�m/2

The spectrum of ReLU in between and O(1/m) O(1/
p
m)

Gij = Ew

⇥
�

0
(w

>
xi)�

0
(w

>
xj)

⇤
hxi, xji

=

✓
1

2

� arccos hxi, xji
2⇡

◆
hxi, xji

=

1X

u=1

�u�u(xi)�u(xj)

Bounding the second term

The difference between true weights and the expected one

kG�Gnk O(⇢(L2(W))

Bounding the second term

The difference between true weights and the expected one

(L2(W))2 =
1

n2

nX

i,j=1

k(wi, wj)
2 � Eu,v

⇥
k(u, v)2

⇤

Difference of expected
and actual weights

kG�Gnk O(⇢(L2(W))

k(x, y) =

1

2

� arccos hx, yi
2⇡

Weight discrepancy

where

A bound on the minimum singular value

With high probability

sm(D)2 � nm�m/2� cn⇢(L2(W))

A simplified result

Suppose and are large enough and weight discrepancy is small

L2(W) = Õ(n�1/4d�1/4)

Then with high probability

n = ⌦̃(1/�m) d = ⌦̃(1/�m)

With high probability

n d

sm(D)2 � nm�m/2� cn⇢(L2(W))

sm(D)2 � ⌦(m)

Final error

For any that has small weight discrepancy

With high probability

W

For and large enoughn d

1

2m

mX

l=1

(f(xl)� yl)
2 O

 ����
@L

@W

����
2
!

Final error

For any that has small weight discrepancy

With high probability

W

For and large enoughn d

1

2m

mX

l=1

(f(xl)� yl)
2 O

 ����
@L

@W

����
2
!

small gradient means small error!

Final error

For any that has small weight discrepancy

With high probability

W

For and large enoughn d

1

2m

mX

l=1

(f(xl)� yl)
2 O

 ����
@L

@W

����
2
!

O(
p
m) O(m)n dand are between and

Most satisfy weight discrepancy small enoughW

Recap

Analyzed optimization landscape of one-hidden layer network

Technical difficulty on ensuring small weight discrepancy

Next: semi-random units

5

-10
-5

-5

0

0

0

5

10

-55

Semi-random units

The main technical difficulty comes from the nonlinearity part

Decouple ReLU: semi-random units

�(w>
x) = I

⇥
w

>
x > 0

⇤
w

>
x

replace by random projections!

�(w>
x) = I

⇥
r

>
x > 0

⇤
w

>
x

Semi-random units

Properties of semi-random units

• It sits between fully-random features and fully-adjustable units

• Linear in the parameters, but nonlinear in the input

• Guaranteed to converge to global optimum w.h.p.

• Has universal approximation ability

Experiment results

Matching the performance of ReLU

Covtype dataset Webspam dataset

Experiment results

Width vs depth; depth helps more

Covtype dataset Webspam dataset

Experiment results

Image classification benchmarks

SVHN dataset. The Street View House Numbers (SVHN) dataset contains house digits collected by Google Street
View. We use the 32⇥ 32 color images version and only predict the digits in the middle of the image. For training, we
combined the training set and the extra set to get a dataset with 604,388 images. We use the same architecture as in
the CIFAR10 experiments. ReLU has the lowest error of 3.9% while semi-random units achieve close error of 6.4%.
Random features suffer from huge errors.

Table 2: Test error (in %) of different methods on three image classification benchmark datasets. 2⇥, 4⇥ and 16⇥
mean the number of units used is 2 times, 4 times and 16 times of that used in neural network with ReLU respectively.

neuron type MNIST CIFAR10 SVHN

ReLU 0.70 16.3 3.9
RF 8.80 59.2 73.9
RF 2⇥ 5.71 55.8 70.5
RF 4⇥ 4.10 49.8 58.4
RF 16⇥ 2.69 40.7 37.1
SR 0.97 21.4 7.6
SR 2⇥ 0.78 17.4 6.9
SR 4⇥ 0.71 18.7 6.4

7 Better than Random Feature?
The experimental results verified our intuition that semi-random feature can outperform random feature with fewer
number of unites due to its learnable weights. We can also strengthen this intuition via the following theoretical
insights. Let f 2 F

random,n
1

···nH
be a function that is a composition of any fully-random features with depth H

where the adjustable weights are only in the last layer. The following corollary states that a model class of any
fully-random features has a approximation power exponentially bad in the dimensionality of x in the worst case.

Corollary 8 (Lower bound on approximation power for fully-random feature) Let ⌦ = [0, 1]d. For any depth H � 0,

and for any set of nonzero widths {n
1

, n
2

, . . . , nH},

sup

f2�C

inf

ˆf2F
random,n

1

···nH

kf � ˆfkL2

(⌦)

� C

d2
(nH)

�1/d,

where � (8⇡e(⇡�1)

)

�1

is a constant.

Corollary 8 (lower bound for fully-random feature) together with Theorem 5 (lower bound for semi-random fea-
ture) reflects our intuition that semi-random feature model can potentially get exponential advantage over random
feature by learning hidden layer’s weights. Again, because the lower bound may not be tight, this is intended only to
aid our intuition.

We can also compare upper bounds on their approximation errors with an additional assumption. Assume that we
can represent a target function f using some basis as

f(x) =

Z

r2Sd�1,kwkCW

�(r>x)(w>x) p(r, w).

Then, we can obtain the following results.

• If we have access to the true distribution p(r, w), f(x) can be approximated as a finite sample average, obtaining
approximation error of O(

1p
n
).

13

Conclusion

For one-hidden-layer neural network, under weight diversity
condition, any critical points are w.h.p. global optimal

The result depends on the spectrum decay of the kernel
associated with the activation function

Propose semi-random units and networks with these units are
guaranteed to converge to global optimal

Matching the performance of ReLU with slightly more units but
much better than random features

