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Adapting across domains ?

• Fine tune?  
…..Zero or few labels in target domain

• Siamese network?
…..No paired / aligned instance examples!



Adapting across domains: minimize discrepancy

[ICCV 2015]

object 
classifier



Adapting across domains: minimize discrepancy

[ICCV 2015]

object 
classifier

Discrepency



Adapting across domains: minimize discrepancy

[ICCV 2015]

object 
classifier

domain 
classifier



Adapting across domains: minimize discrepancy

[ICCV 2015]

domain 
classifier



Adapting across domains: minimize discrepancy

[ICCV 2015]

domain 
classifier



Adapting across domains: minimize discrepancy

[ICCV 2015]

domain 
classifier



Adapting across domains: minimize discrepancy

[ICCV 2015]

object 
classifier



Source Data

backpac

k
chair bike

fc

8
conv1 conv5

fc

6

fc

7
labeled target 

data

fc

8conv1 conv5
source 

data

fc

D

fc

6

fc

7

classification

loss

domain 

confusion

loss

domain 

classifier

loss

s
h
a
re

d

s
h
a
re

d

s
h
a
re

d

s
h
a
re

d

s
h
a
re

d

Domain Label Cross-entropy with uniform distribution

Adversarial Training of domain label predictor 

and domain confusion loss: 

Deep domain confusion

Unlabeled Target Data

?

[Tzeng ICCV15 ]



Deep domain confusion

Train a network to minimize classification loss AND 
confuse two domains

[Tzeng ICCV15 ]
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= 𝑝(𝑦𝐷 = 1|𝑥)
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Source Data + Labels
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Adversarial Discriminative Domain Adaptation (ADDA)

Discriminator Adversarial 

loss

Which loss?Shared or not?
Generative or

discriminative?
GAN

(in submission)



Adversarial Discriminative Domain Adaptation (ADDA)
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ADDA: Adaptation on digits (in submission)



ADDA: Adaptation on RGB-D (in submission)

Train on RGB

Test on depth
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2) Abandon engineering principles, learn “end-to-end” policy
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Autonomous Driving Paradigms

1) Learn affordances to predict state; apply rules or learned classic 
controllers

How can visual sensing be robust to new enviroments? 
…Fully Convolutional Domain Adaptation “in the wild”

2) Abandon engineering principles, learn “end-to-end” policy

How to learn generic driving policies from diverse data?
…Learning end-to-end driving policy/model from crowdsourced videos



BDD Dataset

BDD Video BDD Segmentation

• 720p 30fps 40s video clips

• ~50K clips

• GPS + IMU

• 720p images

• Fine instance segmentation

• Compatible with Cityscapes



In-domain fully supervised FCN

Train on Cityscapes, Test on Cityscapes



Domain shift: Cityscapes to SF

Train on Cityscapes, Test on San Francisco Dashcam



No tunnels in CityScapes?...





Medium Shift: Cross Seasons Adaptation



Small Shift: Cross City Adaptation
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Effect of domain confusion loss 



BDD Dataset – static 
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Learning and Adapting from Large-Scale Driving 
Data

• Fully Convolutional Domain Adaptation “in the wild”

• Learning end-to-end driving policy/model from dashcam videos



End-to-End Paradigm

• ALVINN

• DAVE

• NVIDIA

• BDD RC Cars

• BDD WebCam



AVLINN
(1989)



DAVE (2003)

Yann LeCun, Eric Cosatto, Jan Ben, Urs Muller, Beat Flepp: End-to-End Learning of Vision-Based Obstacle Avoidance for Off-
Road Robots. Delivered at the Learning@Snowbird Workshop, April 2004.

http://yann.lecun.com/


NVIDIA (2016)



[Karl Zipser]



model driving car, ‘direct’ mode



10 future
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conv1 96 channels
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4 channels

conv2

metadata input 4 channels

camera input

fully connected 512 channels

steering motor







Driving Policy



Learning a universal driving policy

• Self driving as egomotion prediction

• Learn general driving policy that is 

applicable to all car models.

• Use a large number of easily accessible 

dashcam videos as self-supervision.



FCN-LSTM

Visual Encoder

• Dilated Fully Convolutional Nets could provide more spatial details than CNN

Temporal Fusion

• Fuse the visual information, vehicle state (speed and angular velocity) from 

each frame



FCN-LSTM

Privileged Learning

• The model should implicitly know what 

objects are in the scene

• We use the semantic segmentation mask 

from Cityscapes as extra source of 

supervision

• It ultimately improves the learnt 

representation of the dilated FCN

Vapnik V, Vashist A. A new learning paradigm: Learning using privileged information[J]. Neural Networks the Official Journal of the 
International Neural Network Society, 2009, 22(5-6):544-57.



Dataset

Sample frames from the dataset

• Real first person driving 

videos

• Diverse
• City

• Highway

• Rainy days

• Nights and evenings

• Construction zones



Scene and Trajectory Reconstruction of 

Crowd-sourced Driving Videos using 

Semantic Filtered SfM

Yang Gao*, Huazhe Xu*, Christian Hane, Fisher Yu,

Trevor Darrell



Challenging Driving Videos in the Wild

Challenges

Moving Objects

Subtle behaviors

Lane changing

Slight Steering

Unknown Camera Calibration

Rolling Shutters



Existing Motion-Based Method Failed to Reject Moving Object from

the Scene

Keypoints from motion-based keypoints rejection

methods

Keypoints from our Semantic Filtered SfM pipeline. Most

moving keypoints have been filtered out.



Semantically Filtered SfM: 𝑆𝑓 2𝑀

Classical keypoints matching as points pair preference ranking

𝑀 𝑖1, 𝑖2 =
1

𝑑 𝐼1, 𝑖1 , 𝑑 𝐼2, 𝑖2 2

M is the preference score over point pair 𝑖1, 𝑖2 , defined by distance between two low level descriptors 𝑑(⋅,⋅). 

Classical matchings could be formulated as ranking based on 𝑀 ⋅,⋅

Semantics should be incorporated in SfM to be robust to moving objects

𝑀 𝑖1, 𝑖2 =
𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝐼1,𝐼2 [𝑖1,𝑖2]

𝑑 𝐼1,𝑖1 ,𝑑 𝐼2,𝑖2 2

Use the FCN as a semantic term

𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝐼1, 𝐼2 𝑖1, 𝑖2 = 𝐹𝐶𝑁 𝐼1 𝑖1 ⋅ 𝐹𝐶𝑁(𝐼2)[𝑖2]



City Turning Example



Lots of Moving Vehicles Example



Recover the subtle car backing behavior



Experiments – Continuous Actions

Lane following: left and right



Experiments – Continuous Actions

Intersection



Experiments – Continuous Actions

Side Walk





BDD Dataset – video 
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Explainable AI (XAI): Visual Explanations

Western Grebe

This is a Western Grebe because 
this bird has a long white neck, 
pointy yellow beak and red eye.

Laysan Albatros
This is a Laysan Albatross because 
this bird has a hooked yellow beak 
white neck and black back. 

This bird has black and white feathers, with a white neck and a yellow beak.

Visual 
Explanations

Class definitions

Image
Descriptions

Image Relevance

Class discriminating



Explainable Models with Implicit Capabilities

•Translate DNN hidden state into 
• human-interpretable language 
• visualizations and exemplars 

Can you park here?



Visual Question Answering





NAACL 2016: MCB with Attention
• Predict spatial attentions with MCB
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Attention for captioning : 
- K. Xu, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Attention for  VQA : 
- H. Xu, K. Saenko Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering
- J.Lu Hierarchal Question-Image Co-Attention for Visual Question Answering 



Winner VQA Challenge 2016 (real open ended)
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Attention Visualizations

What is the woman feeding the giraffe?
Carrot
[Groundtruth: Carrot]



Attention Visualizations

What color is her shirt?
Purple
[Groundtruth: Purple]



Attention Visualizations

What is her hairstyle for the picture?
Ponytail
[Groundtruth: Ponytail]



Attention Visualizations

What color is the chain on the red dress?
Pink
[Groundtruth: Gold]

• Correct Attention, Incorrect Fine-grained Recognition



Attention Visualizations

Is the man going to fall down?
No
[Groundtruth: No]



Attention Visualizations

What is the surface of the court made of?
Clay
[Groundtruth: Clay]



Attention Visualizations

What sport is being played?
Tennis
[Groundtruth: Tennis]



Attentive Explanations: 
Justifying Decisions and Pointing to the Evidence





Human ground truth for the textual justification task.



Human ground truth for the pointing task.



Discussing different evidence for different images.



Discussing different evidence for different questions.



Discussing different evidence for different questions.



Differentiating between some activities requires understanding 

special equipment.



Differentiating between some activities requires recognizing 

specific context.



Differentiating between some activities requires recognizing 

specific context.



Explanations when the model predicts the wrong answer.



Explainable Models with Explicit Capabilities

Explain higher-level reasoning in DNNs 

Explainable decision path for multi-task, control and planning

Provide structure and intermediate state

Can you park here?



Explainable Models with 

Explicit and Implicit Capabilities

No, because there is a person in the bus.



Grounded question answering

yes

93

Is there a red 
shape above 

a circle?



Neural nets learn lexical groundings

yes

94

[Iyyer et al. 2014, Bordes et al. 2014, 
Yang et al. 2015, Malinowski et al., 2015]
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Semantic parsers learn composition

yes

97

[Wong & Mooney 2007, Kwiatkowski et al. 2010,
Liang et al. 2011, A et al. 2013]
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Neural module networks learn both!

yes
Is there a red 
shape above 

a circle?

red
andand
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Neural module networks
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Neural module networks

yes
Is there a red shape 

above a circle?
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Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown 

metal thingthat is left of the big sphere?

Q: There is a sphere with the same size as the metal cube; is 

it made of the same material as the small red sphere?

Q: How many objects are either small cylinders or red things?

Questions in CLEVR test various aspects of visual reasoning 

including attribute identification,counting, comparison, spatial 

relationships, andlogical operations.



Learning to Reason: End-to-End Module 

Networks for Visual Question Answering

R. Hu, J. Andreas, M. Rohrbach, T. Darrell, K. Saenko



Background

Natural language is compositional: the meaning of a sentence comes from the meanings of its components.

Different questions may require significantly different reasoning procedure.

● What kind of vehicle is the one on the left of the brown car that is next to the building?

● Why is the person running away?



Background

● Neural Module Networks: dynamic inference structure for each question

● Previous work: structure from NLP parser or parser re-ranking

● This work: learned layout policy to dynamically build a network



End-to-End Module Networks (N2NMN)

Components

● Layout policy p(l | q) with sequence-to-sequence RNN

● Neural modules with co-attention, dynamically assembled into a network



End-to-end Training

Loss

where is the softmax loss of the answer

Optimization: policy gradient method

Easier: behavior cloning from expert layout policy



Experiments on the CLEVR dataset



Cloning 

expert

End-to-end 

optimization 

after cloning



Policy Search from scratch (no experts used)

Even without resorting to an expert policy during training, our method still achieves state-of-the-art 

performance with reinforcement learning from scratch.



Accuracy v.s. Question length

Even on long questions with 30+ words, our method still achieves relatively high accuracy (Figure a).



Detailed output visualization
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