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Adapting across domains ?
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* Applying source classifier to target domain can
vield inferior performance...




Adapting across domains ?
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* Fine tune?
...Zero or few labels in target domain
* Siamese network?
..No paired / aligned instance examples!



Adapting across domains: minimize discrepancy
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Adapting across domains: minimize discrepancy
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Deep domain confusion [Tzeng ICCV15]

fc fC source fC
convl =++ convs 6|7 data 3
"""""""" @%
Source Data S :

o o = =} > © ' cggfmugilgn 9

% % % % fc y loss % classification

& 5 Bamy R ——m | s

Unlabeled Target Data | Somain
N SR
‘FO@) o loss
KT
fc| |fc| L fc
convl "+ convo 6l 171 8
labeled target
data
Adversarial Training of domain label predictor Lp(rs, 27, bepr:0p) = — E 1lyp = d|logqq
and domain confusion loss: 5
: 1
11111 CD(Q:S} LT, Qrepr; QD) Econf(ijS; xrr, QD; Qrepr) - E Y 108; qd-
Op y D

min Econf(ms . L, QD; Qrepr)- Domain Label Cross-entropy with uniform distribution

repr



Deep domain confusion

[Tzeng ICCV15]

Train a network to minimize classification loss AND
confuse two domains
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Adversarial Discriminative Domain Adaptation (ADDA) (in submission)

Source Data + Labels

Generative or
discriminative?\/

Unlabeled Target Data

classification
loss

Encoder = 00

Classifier

Shared or not?\/

GAN
Which loss?

_____ . Discriminator |.....| Adversarial
----------- loss

Encoder
Method Base model = Weight sharing Adversarial loss
Gradient reversal [ 0] discriminative shared minimax
Domain confusion [ 7] discriminative shared confusion
CoGAN [ 7] generative unshared GAN

ADDA (Ours) discriminative unshared GAN




Adversarial Discriminative Domain Adaptation (ADDA) (in submission)

Pre-training Adversarial Adaptation Testing
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ADDA: Adaptation on digits

Sl 3125126
16151514
o g 3 O 00 2

(in submission)

MNIST — USPS USPS — MNIST SVHN — MNIST
Method /17123 OIS ) I0ISEE /1712 BREED? [MEd /17| >
Source only 0.752 £ 0.016 0.571 £ 0.017 0.601 £ 0.011
Gradient reversal 0.771 £+ 0.018 0.730 £ 0.020 0.739 [16]
Domain confusion 0.791 £+ 0.005 0.665 £+ 0.033 0.681 = 0.003
CoGAN 0.912 £ 0.008 0.891 £ 0.008 did not converge
ADDA (Ours) 0.894 £ 0.002 0.901 £ 0.008 0.760 = 0.018




ADDA: Adaptation on RGB-D (in submission)

Train on RGB

Test on depth

- K= =
"© ﬁ - 3 g
5 3 . & s & . £z s . F
= : 2 5 2 8 g 2 5 8 2 B3
E 3 8 B £ 2 &8 8 £ § E 2 ®? 2 £ § 3 % 3 8
# of instances 19 06 87 210 611 103 122 129 25 55 144 37 51 276 47 129 210 33 17 2401

Source only  0.000 0.010 0.011 0.124 0.188 0.029 0.041 0.047 0.000 0.000 0.069 0.000 0.039 0.587 0.000 0.008 0.010 0.000 0.000 0.139
ADDA (Ours) 0.000 0.146 0.046 0.229 0.344 0.447 0.025 0.023 0.000 0.018 0.292 0.081 0.020 0.297 0.021 0.116 0.143 0.091 0.000 0.211

Train on target 0.105 0.531 0.494 0.295 0.619 0.573 0.057 0.636 0.120 0.291 0.576 0.189 0.235 0.630 0.362 0.248 0.357 0.303 0.647 0.468




Autonomous Driving Paradigms

1) Learn affordances to predict state; apply rules or learned classic
controllers

2) Abandon engineering principles, learn “end-to-end” policy
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How can visual sensing be robust to new enviroments?

2) Abandon engineering principles, learn “end-to-end” policy

How to learn generic driving policies from diverse data?



Autonomous Driving Paradigms

1) Learn affordances to predict state; apply rules or learned classic
controllers

How can visual sensing be robust to new enviroments?
...Fully Convolutional Domain Adaptation “in the wild”

2) Abandon engineering principles, learn “end-to-end” policy

How to learn generic driving policies from diverse data?
...Learning end-to-end driving policy/model from crowdsourced videos



BDD Dataset

BDD Video BDD Segmentation
e 720p 30fps 40s video clips « 720p Images
« ~50K clips * Fine instance segmentation

« GPS + IMU « Compatible with Cityscapes



In-domain fully supervised FCN

W

Train on Cityscapes, Test on Cityscapes



Domain shift: Cityscapes to SF
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Train on Cityscapes, Test on San Francisco Dashcam



No tunnels in CityScapes?...

A driving1.mkv - VLC media player
Media Playback Audio Video Subtitle Tools View Help

[ oo mone] ] i@




Source domain: labeled data Source domain: Ground Truth

I Class Size

\l—l—l—u_-—’ :DiStributionl
Domain | =—=-=-—~=-- ‘

Shared Weight Adversarial - Transher

o \

Training , Constrained 1

Target domain: unlabeled data Target domain: Network Output



(a) Fall Image (b) Winter Image (c) Before Adaptation (d) After Adaptation (e) Ground Truth

Medium Shift: Cross Seasons Adaptation



(a) Original Image (b) Before Adaptation (c) After Adaptation

Small Shift: Cross City Adaptation



Effect of domain confusion loss

Before domain confusion After domain confusion
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Effect of domain confusion loss

Before domain confusion After domain confusion




BDD Dataset — static

arXiv.org > cs > arXiv:1612.02649

Broaden ya

Search or Article ID inside arXiv  All papers

(Help | Advanced search)

Computer Science > Computer Vision and Pattern Recognition

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation

Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell
(Submitted on 8 Dec 20186)

Fully convolutional models for dense prediction have proven successful for a wide range of visual tasks. Such models perform well in
a supervised setting, but performance can be surprisingly poor under domain shifts that appear mild to a human observer. For
example, training on one city and testing on another in a different geographic region and/or weather condition may result in
significantly degraded performance due to pixel-level distribution shift. In this paper, we introduce the first domain adaptive
semantic segmentation method, proposing an unsupervised adversarial approach to pixel prediction problems. Qur method consists
of both global and category specific adaptation techniques. Global domain alignment is performed using a novel semantic
segmentation network with fully convolutional domain adversarial learning. This initially adapted space then enables category
specific adaptation through a generalization of constrained weak learning, with explicit transfer of the spatial layout from the source
to the target domains. Our approach outperforms baselines across different settings on multiple large-scale datasets, including
adapting across various real city environments, different synthetic sub-domains, from simulated to real environments, and on a
novel large-scale dash-cam dataset.
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Learning and Adapting from Large-Scale Driving
Data

* Fully Convolutional Domain Adaptation “in the wild”

 Learning end-to-end driving policy/model from dashcam videos



End-to-End Paradigm

* ALVINN
 DAVE

* NVIDIA

* BDD RC Cars

e BDD WebCam



AVLINN ALVINN:

An Autonomous Land Vehicle In a
Neural Network

Dean A. Pomerleau
January 1989
CMU-CS5-89-107-

30x3l Sensor
Tnput Eetina




DAVE (2003)

Yann LeCun, Eric Cosatto, Jan Ben, Urs Muller, Beat Flepp: End-to-End Learning of Vision-Based Obstacle Avoidance for Off-
Road Robots. Delivered at the Learning@Snowbird Workshop, April 2004.



http://yann.lecun.com/

NVIDIA (2016)
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[Karl Zipser]



model driving car, ‘direct’ mode




timepoints timepoints

w A

steering

fully connected 512 channels

conv?2 384 channels

metadata input 4 channels

convl _ 96 channels

camera input 4 channels










Trevor




Learning a universal driving policy

 Self driving as egomotion prediction

« Learn general driving policy that is
applicable to all car models.

« Use a large number of easily accessible
dashcam videos as self-supervision.




FCN-LSTM

Visual Encoder

- Dilated Fully Convolutional Nets could provide more spatial details than CNN

Temporal Fusion

* Fuse the visual information, vehicle state (speed and angular velocity) from

each frame

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

( action >

4

LSTM ......

Clioy,

dilated
FCN



FCN-LSTM

Privileged Learning

* The model should implicitly know what
objects are in the scene

« We use the semantic segmentation mask
from Cityscapes as extra source of
supervision

« It ultimately improves the learnt
representation of the dilated FCN

Vapnik V, Vashist A. A new learning paradigm: Learning using privileged information[J]. Neural Networks the Official Journal of the
International Neural Network Society, 2009, 22(5-6):544-57.



Dataset

« Real first person driving
videos

* Diverse
« City
« Highway
« Rainy days
* Nights and evenings
« Construction zones

Sample frames from the dataset



Scene and Trajectory Reconstruction of
Crowd-sourced Driving Videos using
Semantic Filtered SfM

Yang Gao*, Huazhe Xu*, Christian Hane, Fisher Yu,
Trevor Darrell



Challenging Driving Videos in the Wild

Challenges
Moving Objects
Subtle behaviors

Lane changing

Slight Steering

Unknown Camera Calibration

Rolling Shutters



Existing Motion-Based Method Failed to Reject Moving Object from
the Scene

Keypoints from motion-based keypoints rejection Keypoints from our Semantic Filtered SfM pipeline. Most
methods moving keypoints have been filtered out.



Semantically Filtered SfM: (Sf)*M

Classical keypoints matching as points pair preference ranking

1
||d(11) il)) d(12; l2)||2

M(ill lZ) =

M is the preference score over point pair (i, i), defined by distance between two low level descriptors d(:,-).
Classical matchings could be formulated as ranking based on M (-,)

Semantics should be incorporated in SfM to be robust to moving objects

Semantic(14,I3)[iq,i2]
| |d(111i1)1d(12)i2) | |2

M(ib iz) =

Use the FCN as a semantic term

Semantic(ly,1,)[i1,i5] = FCN(I;)[i1] - FCN (I,)[i,]



City Turning Example
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Lots of Moving Vehicles Example




Recover the subtle car backing behavior
oo Moving paths from Both GPS Moving paths from Details at the starting point
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Experiments — Continuous Actions

: =9.01 degree/s
: -9.50 degree/s

Lane following: left and right



Experiments — Continuous Actions

pdEruth angular speed: -65.34 degree/s ' h .Tfﬁll"ii;}i: -25.36 degree/s
: -27.50 degree/s . ieted  angular _speed: - RE

ree/s

Intersection



Experiments — Continuous Actions

Side Walk






BDD Dataset — video

arXiv.org > c¢s > arXiv:1612.01079 Search or Article ID inside arXiv  All papers

(Help | Advanced search)

Broaden

Computer Science > Computer Vision and Pattern Recognition

End-to-end Learning of Driving Models from Large-scale Video Datasets

Huazhe Xu, Yang Gao, Fisher Yu, Trevor Darrell
(Submitted on 4 Dec 2016)

Robust perception-action models should be learned from training data with diverse visual appearances and realistic behaviors, yet
current approaches to deep visuomotor policy learning have been generally limited to in-situ models learned from a single vehicle or
a simulation environment. We advocate learning a generic vehicle motion model from large scale crowd-sourced video data, and
develop an end-to-end trainable architecture for learning to predict a distribution over future vehicle egomotion from instantaneous
monocular camera observations and previous vehicle state. Our model incorporates a novel FCN-LSTM architecture, which can be
learned from large-scale crowd-sourced vehicle action data, and leverages available scene segmentation side tasks to improve
performance under a privileged learning paradigm.
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Explainable Al (XAl): Visual Explanations

Image
Image Relevance 4 5
Descriptions

Class definitions

>
Class discriminating

This bird has black and white feathers, with a white neck and a yellow beak.

Western Grebe Laysan Albatros
This is a Laysan Albatross because

this bird has a hooked yellow beak
white neck and black back.

This is a Western Grebe because
this bird has a long white neck,
pointy yellow beak and red eye.



Explainable Models with Implicit Capabilities

*Translate DNN hidden state into
* human-interpretable language
* visualizations and exemplars

Can you park here?

Prediction | NO_ B ™ ® No parking, because
<A _ there is a red curb
Hidden representation (N : I '
/ \ Learned deep interpreter

Input

Implicit explanation model

Base model



Visual Question Answering

ilrevor - O x

[ VQA: Visual Question Ar X
& C ¢ @ visualga.org/challenge.html Q% & 0O :
7 Apps W Bookmarks M Gmail [E] ACCTS - Google Docs  [% AmazonSmile [ Cal Answers Bl Intera » [ Other bookmarks

W VirginiaTech

v A . . Invent the Future®
Visual Question Answering

Microsoft Research

Home People Code Demo Download Evaluation - Browse Visualize Workshop Sponsors Terms External

Welcome to the VQA Challenge

Overview Challenge Guidelines Leaderboards |

What is the mustache
made of?




How many slices of pizza are there? Is this person expecting company? Does it appear to be rainy?
Is this a vegetarian pizza? What is just under the tree? Does this person have 20/20 vision?
Who is wearing glasses? Where is the child sitting?

woman
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NAACL 2016: MCB with Attention

* Predict spatial attentions with MCB

2048x14x14

16k x14x14
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Mbs pausis
n|ay ‘Au0)

2048x14x14

uonezijewlon g1

What is the
yellow food?

VI XVT XZTS
VIXVIXT

INLST TIM

1bs paugig
uoljezijewdJon ¢
pa3oauuo) ||n4

2048 /

>
e

Attention for captioning :
- K. Xu, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Attention for VQA :
- H. Xu, K. Saenko Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering
- J.Lu Hierarchal Question-Image Co-Attention for Visual Question Answering
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Winner VQA Challenge 2016 (real open ended)



Attention Visualizations

What is the woman feeding the giraffe?
Carrot
[Groundtruth: Carrot]




Attention Visualizations

What color is her shirt?
Purple
[Groundtruth: Purple]




Attention Visualizations

What is her hairstyle for the picture?
Ponytail
[Groundtruth: Ponytail]




Attention Visualizations

What color is the chain on the red dress?
Pink
[Groundtruth: Gold]

» Correct Attention, Incorrect Fine-grained Recognition



Attention Visualizations

Is the man going to fall down?
No
[Groundtruth: No]




Attention Visualizations

What is the surface of the court made of?
Clay
[Groundtruth: Clay]

o 9




Attention Visualizations

What sport is being played?
Tennis
[Groundtruth: Tennis]




Attentive Explanations:
Justifying Decisions and Pointing to the Evidence
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Q: What is the person doing?

Q: What is the person doing?

VQA-ATT

A: Skiing

EXP-ATT VQA-ATT EXP-ATT
: : *c
“n‘ -* T——
Because: A: Skiing Because:

They are on skis and
going down a
mountain

He is on a snowy hill
wearing skis and
clothing appropriate
for skiing




Human ground truth for the textual justification task.

Description

A man on a snowboard is on
a ramp.

A gang of biker police riding
s@ their bikes in formation down
o a street.

Explanation

Q: What is the person doing?
A: Snowboarding

Because... they are on a
snowboard in snowboarding
outfit.

Q: Can these people arrest
someone?
A: Yes

Because... they are
Vancouver police.

Description

A man in a black shirt and
blue jeans is holding a
glowing ball.

} _' i A man standing wearing a
# pink shirt and grey pants

near a ball.

Explanation
| can tell the person is juggling

Because... he holds two balls
in one hand, while another
ball is aloft just above the
other hand.

Because... he has two balls
in his hands while two are in
the air.



Human ground truth for the pointing task.

Q: What is the person doing? A: Skiing

”~

Activity: Mowing Lawn




Discussing different evidence for different images.

Q: Where is this picture taken? A: Airport

Because there are planes and trucks parked on the tarmac

Because there is a baggage carousel

VQA-ATT

EXP-ATT

-

s
"

VQA-ATT

EXP-ATT




Discussing different evidence for different questions.

Q: Is this a social event? A: Yes
Because they are many people gathered together

VQA-ATT

EXP-ATT

Q: What game are they playing? A: Soccer
Because they are kicking a soccer ball

- -
s e
.é '
VQA-ATT EXP-ATT



Discussing different evidence for different questions.

Q: Is this a social event? A: Yes
Because they are many people gathered together

VQA-ATT

EXP-ATT

Q: What game are they playing? A: Soccer
Because they are kicking a soccer ball

- -
s e
.é '
VQA-ATT EXP-ATT



Differentiating between some activities requires understanding
special equipment.

1 can see that he is windsurfing
Because he is standing on a windsurfing board and holding on to the sail

ACT-ATT EXP-ATT
I can see that he is kayaking
Because the is sitting in a kayak and using a paddle in his hands

2 -
~

s

ACT-ATT EXP-ATT

1 can see that he is canoeing
Because the is sitting in a canoe and paddling with a paddle in the water

ACT-ATT EXP-ATT



Differentiating between some activities requires recognizing
specific context.

I can see that he is bicycling, BMX
Because he is riding a bmx bike and doing a trick on a low wall

‘ -
. g

L owmaty
ACT-ATT EXP-ATT

I can see that he is bicycling, racing and road
Because she is wearing a bicycling uniform and riding a bicycle down the road

-
-
-
ACT-ATT EXP-ATT

I can see that he is bicycling, stationary
Because he is sitting on a stationary bike with his feet on the pedals

-

e

ACT-ATT EXP-ATT




Differentiating between some activities requires recognizing
specific context.

I can see that he is bicycling, BMX
Because he is riding a bmx bike and doing a trick on a low wall

‘ -
. g

L owmaty
ACT-ATT EXP-ATT

I can see that he is bicycling, racing and road
Because she is wearing a bicycling uniform and riding a bicycle down the road

-
-
-
ACT-ATT EXP-ATT

I can see that he is bicycling, stationary
Because he is sitting on a stationary bike with his feet on the pedals

-

e

ACT-ATT EXP-ATT




Explanations when the model predicts the wrong answer.

Q: What is the bear doing? GT = Swimming, P = Eating

Because it is hungry and likes food

= =

Y .

VQA-ATT EXP-ATT

Q: Should we stop? GT = Yes, P = No

Because the light is green

VQA-ATT EXP-ATT

GT = Piano, Sitting, P = Carpentry, General

Because he is standing in a workshop with many tools on the table

: .
ACT-ATT EXP-ATT
GT = Manual or Unskilled Labor, P = Yoga, Power
Because he is sitting on a yoga mat and holding a yoga pose
- :
»
“ .
ACT-ATT EXP-ATT




Explainable Models with Explicit Capabillities

Explain higher-level reasoning in DNNs
Explainable decision path for multi-task, control and planning
Provide structure and intermediate state

Can you park here?
'NO | Prediction

Neural =] ’
mOdule Il i : b s -~ . . . .
s AL >, .
network . Attention visualization

Explicit explanation model Decision path



Explainable Models with
Explicit and Implicit Capabilities

attend[tie]

\

\

classify[color]
(a) NMN for the question What color is his tie?

find[people]

- TRUE FALSE

2

|

find[bus]

relate[in]

-

and

-

exists

not

(o))

(b) NMN for the question Is the bus empty?

NoO, because there is a person in the bus.



Grounded question answering

Is there a red
shape above yes
a circle?



Neural nets learn lexical groundings

j o \
Is there a red

shape above yes
a circle?

[lyyer et al. 2014, Bordes et al. 2014,
Yang et al. 2015, Malinowski et al., 2015]



Semantic parsers learn composition

Is there a red

shape above yes
a circle?

[Wong & Mooney 2007, Kwiatkowski et al. 2010,
Liang et al. 2011, A et al. 2013]



Neural module networks learn both!

Is there a red
shape above yes
a circle?



Neural module networks

Is there a red shape
above a circle?

A A

red on H u
= e

exists E > true
®

A

above E - H




Neural module networks

Is there a red shape
above a circle? A

A A
w L~ El
®
K. 4
exists E > true *
A
above - - H




Neural module networks

yes
Is there a red shape

IS
above a circle? ¢ A A

A A
w L~ El
o
R 4
exists E > true ¢
°
A
above E - H




CLEVR: A Diagnostic Dataset for
Compositional Language and Elementary Visual Reasoning

Justin Johnson!2* Bharath Hariharan? Laurens van der Maaten?
Li Fei-Feil C. Lawrence Zitnick? Ross Girshick?
'Stanford University 2Facebook Al Research

Q: Are there an equal number of large things and metal spheres?
Q: What size is the cylinder that is left of the brown

metal thingthat is left of the big sphere?

Q: There is a sphere with the same size as the metal cube;is

it made of the same material as the small red sphere?

Q: How many objects are either small cylinders or red things?

Questions in CLEVR test various aspects of visual reasoning
including attribute identification,counting, comparison, spatial
relationships, andlogical operations.




Learning to Reason: End-to-End Module
Networks for Visual Question Answering
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Background

Natural language is compositional: the meaning of a sentence comes from the meanings of its components.
Different questions may require significantly different reasoning procedure.
e \What kind of venhicle is the one on the left of the brown car that is next to the building?

e Why is the person running away?



Background

e Neural Module Networks: dynamic inference structure for each question
e Previous work: structure from NLP parser or parser re-ranking

e This work: learned layout policy to dynamically build a network

There 1s a shiny object that 1s right of the gray metallic cylinder;
does it have the same size as the large rubber sphere?
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End-to-End Module Networks (N2NMN)

Components

e Layout policy p(l | g) with sequence-to-sequence RNN

e Neural modules with co-attention, dynamically assembled into a network

How many other things are of the
same size as the green matte ball?
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End-to-end Training

Loss L(Q) — Eimp(ﬂq;ﬂ) [E(G! l; q, I)]

where L(6,1;q,1) is the softmax loss of the answer

Optimization: policy gradient method

VoL = Eipiass) | L(6,1)V5 logp(llg; 6) + VoL(6,1)]

M

: ) .

~ M X, (L(e,lm)ve log p(lm|q; 0) + VGL(H’lm))
m=1

Easier: behavior cloning from expert layout policy



Experiments on the CLEVR dataset
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Compare Integer Query Attribute Compare Attribute

Method Overall Exist Count equal less more size color material shape size color material shape
CNN+BoW [25] 48.4 59.5 38.9 50 54 49 56 32 58 47 52 52 51 52
CNN+LSTM [4] 52.3 65.2 43.7 57 72 69 59 32 58 48 54 54 51 53
CNN+LSTM+MCB [Y] 514 63.4 42.1 57 71 68 59 32 57 48 51 52 50 51
CNN+LSTM+SA [24] 68.5 71.1 52.2 60 82 74 87 81 88 85 52 55 51 51
ours - cloning expert 78.9 83.3 63.3 682 872 854 905 802 88.9 88.3 894 525 85.4 86.7

ours - policy search

. 83.7 85.7 68.5 738 89.7 877 931 848 91.5 9.6 926 828 89.6 90.0
after cloning

question: do the small cylinder that is in front of the small green thing and the object right of the green cylinder have the same material?
ground-truth answer: no
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Policy Search from scratch (no experts used)

Even without resorting to an expert policy during training, our method still achieves state-of-the-art
performance with reinforcement learning from scratch.

Method Overall accuracy
CNN+BoW [4] 48.4
CNN+LSTM [ 1] 52.3
CNN+LSTM+MCB [?] 514
CNN+LSTM+SA [?] 68.5
ours - policy search from scratch 68.5
ours - cloning expert 78.9

ours - policy search after cloning 83.7




Accuracy v.s. Question length

Even on long questions with 30+ words, our method still achieves relatively high accuracy (Figure a).

() accuracy v.s. question length
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guestion: there is a shiny object that is right of the gray metallic cylinder ; does it have the
same size as the large rubber sphere ?

ground-truth answer: "yes" predicted answer: "yes"
0.9
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predicted layout: 0.7
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Overview

Adversarial Domain Adaptation
Learning end-to-end driving models from crowdsourced dashcams

Vision and Language: Learning to reason to answer and explain
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